The inverse optimal value problem for linear fractional programming

We study the inverse optimal value problem for linear fractional programming, where the goal is to find the coefficients of the fractional objective function such that the resulting optimal objective function value is as close as possible to some given target value. We show that this problem is NP-h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Operations research letters Ročník 59; s. 107251
Hlavní autoři: Nadi, Sina, Lee, Taewoo, Prokopyev, Oleg A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2025
Témata:
ISSN:0167-6377
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the inverse optimal value problem for linear fractional programming, where the goal is to find the coefficients of the fractional objective function such that the resulting optimal objective function value is as close as possible to some given target value. We show that this problem is NP-hard. Then, we provide some structural results, which are exploited to derive several reformulations and two solution algorithms. The proposed approaches are based on the Charnes-Cooper and parametric transformations.
ISSN:0167-6377
DOI:10.1016/j.orl.2025.107251