A Randomized Hyperparameter Tuning of Adaptive Moment Estimation Optimizer of Binary Tree-Structured LSTM
Adam (Adaptive Moment Estimation) is one of the promising techniques for parameter optimization of deep learning. Because Adam is an adaptive learning rate method and easier to use than Gradient Descent. In this paper, we propose a novel randomized search method for Adam with randomizing parameters...
Saved in:
| Published in: | International journal of advanced computer science & applications Vol. 12; no. 7 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
West Yorkshire
Science and Information (SAI) Organization Limited
2021
|
| Subjects: | |
| ISSN: | 2158-107X, 2156-5570 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Adam (Adaptive Moment Estimation) is one of the promising techniques for parameter optimization of deep learning. Because Adam is an adaptive learning rate method and easier to use than Gradient Descent. In this paper, we propose a novel randomized search method for Adam with randomizing parameters of beta1 and beta2. Random noise generated by normal distribution is added to the parameters of beta1 and beta2 every step of updating function is called. In the experiment, we have implemented binary tree-structured LSTM and adam optimizer function. It turned out that in the best case, randomized hyperparameter tuning with beta1 ranging from 0.88 to 0.92 and beta2 ranging from 0.9980 to 0.9999 is 3.81 times faster than the fixed parameter with beta1 = 0.999 and beta2 = 0.9. Our method is optimization algorithm independent and therefore performs well in using other algorithms such as NAG, AdaGrad, and RMSProp. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2158-107X 2156-5570 |
| DOI: | 10.14569/IJACSA.2021.0120771 |