Predicting the Level of Safety Feeling of Bangladeshi Internet users using Data Mining and Machine Learning

An amazing combination of cutting-edge data mining and machine learning methodologies to predict the level of safety feeling among Bangladeshi internet users, which is a significant departure in this subject. By leveraging cutting-edge algorithms and innovative data sources, this work provides previ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications Jg. 14; H. 9
Hauptverfasser: Alam, Md. Safiul, Roy, Anirban, Majumder, Partha Protim, Khushbu, Sharun Akter
Format: Journal Article
Sprache:Englisch
Veröffentlicht: West Yorkshire Science and Information (SAI) Organization Limited 2023
Schlagworte:
ISSN:2158-107X, 2156-5570
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An amazing combination of cutting-edge data mining and machine learning methodologies to predict the level of safety feeling among Bangladeshi internet users, which is a significant departure in this subject. By leveraging cutting-edge algorithms and innovative data sources, this work provides previously unheard-of insights into how this demographic perceives online safety, shedding light on an essential yet underappreciated aspect of their digital lives. This exceptional study's original research increases the body of knowledge of online safety and sets the road for policy recommendations and intervention tactics that will enable Bangladesh to become a global leader in internet security.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2023.0140976