Multi-category Classification Problem Oriented Subsampling-Based Active Learning Method

Traditional active learning methods have achieved gratifying results in the classification tasks of less categories such as binary classification, the application research of active learning in the field of big data problems still faces enormous challenges. Since many active learning query strategie...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of physics. Conference series Ročník 1631; číslo 1; s. 12003 - 12011
Hlavní autori: Shi, Wei, Feng, Yanghe, Cheng, Guangquan, Liu, Shixuan, Liu, Zhong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bristol IOP Publishing 01.09.2020
Predmet:
ISSN:1742-6588, 1742-6596
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Traditional active learning methods have achieved gratifying results in the classification tasks of less categories such as binary classification, the application research of active learning in the field of big data problems still faces enormous challenges. Since many active learning query strategies need to perform matrix inversion, the amount of calculation increases exponentially with the increase of the scale of the problem, it is difficult to apply these active learning methods in large scale multi-category data classification task. In order to solve this problem, this paper designed a subsampling-based active learning model, and integrate unsupervised clustering algorithm with traditional active learning method, then conducted experiments on Binary Alphadigits and OMNIGLOT data sets. This paper compares the performance of five traditional active learning algorithms using this subsampling method, namely random sampling, uncertainty sampling, query-by-committee, density weighting and learning-based active learning. Through comparative experiments, the feasibility of active learning based on subsampling for solving the multi-category classification problem is verified, and it is found that the subsampling-based method can break the limitations of traditional active learning methods that cannot deal with large-scale data classification.
AbstractList Traditional active learning methods have achieved gratifying results in the classification tasks of less categories such as binary classification, the application research of active learning in the field of big data problems still faces enormous challenges. Since many active learning query strategies need to perform matrix inversion, the amount of calculation increases exponentially with the increase of the scale of the problem, it is difficult to apply these active learning methods in large scale multi-category data classification task. In order to solve this problem, this paper designed a subsampling-based active learning model, and integrate unsupervised clustering algorithm with traditional active learning method, then conducted experiments on Binary Alphadigits and OMNIGLOT data sets. This paper compares the performance of five traditional active learning algorithms using this subsampling method, namely random sampling, uncertainty sampling, query-by-committee, density weighting and learning-based active learning. Through comparative experiments, the feasibility of active learning based on subsampling for solving the multi-category classification problem is verified, and it is found that the subsampling-based method can break the limitations of traditional active learning methods that cannot deal with large-scale data classification.
Author Shi, Wei
Liu, Shixuan
Cheng, Guangquan
Feng, Yanghe
Liu, Zhong
Author_xml – sequence: 1
  givenname: Wei
  surname: Shi
  fullname: Shi, Wei
  organization: College of Systems Engineering National University of Defense Technology Changsha , China
– sequence: 2
  givenname: Yanghe
  surname: Feng
  fullname: Feng, Yanghe
  email: fengyanghe@yeah.net
  organization: College of Systems Engineering National University of Defense Technology Changsha , China
– sequence: 3
  givenname: Guangquan
  surname: Cheng
  fullname: Cheng, Guangquan
  organization: College of Systems Engineering National University of Defense Technology Changsha , China
– sequence: 4
  givenname: Shixuan
  surname: Liu
  fullname: Liu, Shixuan
  organization: College of Systems Engineering National University of Defense Technology Changsha , China
– sequence: 5
  givenname: Zhong
  surname: Liu
  fullname: Liu, Zhong
  organization: College of Systems Engineering National University of Defense Technology Changsha , China
BookMark eNqFkFtLw0AQhRepYFv9DQZ8E2Kym002eazFKy0tVPFx2WvdkmbjbiL035sQqQiC8zLDmXNm4JuAUWUrBcAljG9gnOcRJBiFWVpkEcwSGMEohiiOkxMwPm5GxznPz8DE-11n6IqMwduyLRsTCtaorXWHYF4y7402nWBsFayd5aXaBytnVNUoGWxa7tm-Lk21DW-Z75SZaMynChaKuapTg6Vq3q08B6ealV5dfPcpeL2_e5k_hovVw9N8tggFIjgJcyQ54alQUrNUaaiyXELMMCsI4gLDIk8gkpgjSTSSCckYlilHWGgBRcF1MgVXw93a2Y9W-YbubOuq7iVFKYmLFMIMdS4yuISz3julae3MnrkDhTHtKdKeD-1Z0Z4ihXSg2CWTIWls_XP6_9T1H6nn9Xzz20hrqZMv7SCEVQ
Cites_doi 10.1016/j.patcog.2018.12.027
10.1038/nature21056
10.1109/TMM.2002.1017738
10.1023/A:1007330508534
10.1613/jair.295
10.1109/ACCESS.2019.2946186
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1631/1/012003
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Multi-category Classification Problem Oriented Subsampling-Based Active Learning Method
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1631_1_012003
JPCS_1631_1_012003
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2743-82db7b5cedfa5ef1e68d14a4a972bc4198312d4b2d7f2d376a4d5b24cfc1c9bf3
IEDL.DBID O3W
ISSN 1742-6588
IngestDate Fri Jul 25 04:35:13 EDT 2025
Sat Nov 29 04:52:25 EST 2025
Thu Jan 07 14:56:20 EST 2021
Wed Aug 21 03:33:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2743-82db7b5cedfa5ef1e68d14a4a972bc4198312d4b2d7f2d376a4d5b24cfc1c9bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/1631/1/012003
PQID 2570951162
PQPubID 4998668
PageCount 9
ParticipantIDs iop_journals_10_1088_1742_6596_1631_1_012003
proquest_journals_2570951162
crossref_primary_10_1088_1742_6596_1631_1_012003
PublicationCentury 2000
PublicationDate 20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 20200901
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Huang (JPCS_1631_1_012003bib11) 2019; 7
Settles (JPCS_1631_1_012003bib4) 2008
Esteva (JPCS_1631_1_012003bib1) 2017; 542
Huang (JPCS_1631_1_012003bib10) 2019; 14
Kai (JPCS_1631_1_012003bib13) 2006
JPCS_1631_1_012003bib19
Pinar (JPCS_1631_1_012003bib16) 2007
Lewis (JPCS_1631_1_012003bib3) 1994
McCallum (JPCS_1631_1_012003bib6) 1998
Zhang (JPCS_1631_1_012003bib15) 2002; 4
Hieu (JPCS_1631_1_012003bib17) 2004
Burr (JPCS_1631_1_012003bib18) 2008
Cohn (JPCS_1631_1_012003bib8) 1996; 4
Zhou (JPCS_1631_1_012003bib2) 2017
Yang (JPCS_1631_1_012003bib14) 2019; 89
Nicholas (JPCS_1631_1_012003bib7) 2001
Freund (JPCS_1631_1_012003bib5) 1997; 28
Zhang (JPCS_1631_1_012003bib9) 2000
JPCS_1631_1_012003bib20
Brinker (JPCS_1631_1_012003bib12) 2003
References_xml – start-page: 116
  year: 2007
  ident: JPCS_1631_1_012003bib16
– start-page: 4761
  year: 2017
  ident: JPCS_1631_1_012003bib2
– volume: 89
  start-page: 22
  year: 2019
  ident: JPCS_1631_1_012003bib14
  article-title: Single shot active learning using pseudo annotators
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2018.12.027
– start-page: 1070
  year: 2008
  ident: JPCS_1631_1_012003bib4
– volume: 542
  start-page: 115
  year: 2017
  ident: JPCS_1631_1_012003bib1
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: JPCS_1631_1_012003bib19
– ident: JPCS_1631_1_012003bib20
– volume: 4
  start-page: 260
  year: 2002
  ident: JPCS_1631_1_012003bib15
  article-title: An active learning framework for content-based information retrieval
  publication-title: IEEE Trans. on Multimedia
  doi: 10.1109/TMM.2002.1017738
– start-page: 1191
  year: 2000
  ident: JPCS_1631_1_012003bib9
– start-page: 350
  year: 1998
  ident: JPCS_1631_1_012003bib6
– volume: 14
  start-page: 1
  year: 2019
  ident: JPCS_1631_1_012003bib10
  article-title: On the improvement of reinforcement active learning with the involvement of cross entropy to address one-shot learning problem
  publication-title: PLoS ONE
– volume: 28
  start-page: 133
  year: 1997
  ident: JPCS_1631_1_012003bib5
  article-title: Selective sampling using the query by committee algorithm
  publication-title: Machine Learning
  doi: 10.1023/A:1007330508534
– start-page: 3
  year: 1994
  ident: JPCS_1631_1_012003bib3
– start-page: 59
  year: 2003
  ident: JPCS_1631_1_012003bib12
– start-page: 1070
  year: 2008
  ident: JPCS_1631_1_012003bib18
– volume: 4
  start-page: 129
  year: 1996
  ident: JPCS_1631_1_012003bib8
  article-title: Active learning with statistical models
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.295
– start-page: 1081
  year: 2006
  ident: JPCS_1631_1_012003bib13
– start-page: 623
  year: 2004
  ident: JPCS_1631_1_012003bib17
– start-page: 441
  year: 2001
  ident: JPCS_1631_1_012003bib7
– volume: 7
  start-page: 147204
  year: 2019
  ident: JPCS_1631_1_012003bib11
  article-title: A reinforcement one-shot active learning approach for aircraft type recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2946186
SSID ssj0033337
Score 2.2337224
Snippet Traditional active learning methods have achieved gratifying results in the classification tasks of less categories such as binary classification, the...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12003
SubjectTerms Active learning
Algorithms
Classification
Clustering
Machine learning
multi-category classification
Physics
Random sampling
Subsampling-based active learning method
Teaching methods
traditional active learning algorithm
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxELUgtFIvUEpRw0dlqT3WSuz1xvYJBUSEENBI9CPiYtmeXcQlCQT4_Xi8XqEICQ7scXcOq33eN_54M4-Qn33hjNcKmFcQmHTKMF8Iw6Rw4I0SIFKF978zdXGhJxMzzhtuiyyrbDkxETXMAu6R99BtLc4G-EAczG8Zukbh6Wq20Fgla9glAa0bxuVVy8RFvFRTEClYzLS61XfFRV--Zwa9OCHhPd7DItLWOStnp9Wb2fwFRae8M9p47xt_Jut5xkmHzRDZJCvV9Av5mJSfYbFF_qcSXIbCKCxWocklE_VDCTI6bgxn6G_shxxnpxSZxqEMfXrNDmMKBDpMlElzp9Zrep5Mqb-Sv6PjP0cnLLstsCCwT6kW4JUvQwW1K6uaVwMNXDrpImI-SG50wQVIL0DVAiIvOQmlFzLUgQfj62KbdKazafWNUBMMd0EboVQltVFOVmIAoYTCeCVBd0m__cp23jTVsOkwXGuLwFgExiIwltsGmC75FdGw-QdbvB3-Yyn8dHx0uRxh51B3yV6L3HPoM2w7rz_eJZ8ELr6T4GyPdO7vHqp98iE83t8s7r6nkfgEV9ngPA
  priority: 102
  providerName: ProQuest
Title Multi-category Classification Problem Oriented Subsampling-Based Active Learning Method
URI https://iopscience.iop.org/article/10.1088/1742-6596/1631/1/012003
https://www.proquest.com/docview/2570951162
Volume 1631
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA86FXzxW5zOEdBH40yaNsnjJhMVN4uf05eQj1Z8mWOb_v0maYsMERHsQynl0obfpXcX-rs7AA5PiBKaM4s0swZRxQTSERGIEmW1YMSSkOH9cMX6fT4YiJlcmLdRafqP3WVRKLiAsCTE8ZaLoQlKYpG0XCyBW7jl8z99wc-FiDtv7tb0dfRYWePIHaxIivSDOK84Xj8_aMZDzbtZfDPTwfecrf7HrNfAShl5wnYxYh3MZcMNsBQYoGayCR5DKi7yBCmftAJDt0zPIwqqg2nReAZe-7rILkqF3uIoT0cfvqCOc4UWtoPphGXF1hfYC82pt8D9Wffu9ByVXReQIb5eKSdWMx2bzOYqznKcJdxiqqhymtOGYsEjTCzVxLKcWGefFLWxJtTkBhuh82gb1IZvw2wHQGEEVoYLwlhGuWCKZiSxJraR0IxaXgcnFdJyVBTXkOGnOOfS4yU9XtLjJbEs8KqDI4ewLD-0ye_iBzPil-np7ayEHNm8DhqVgr9EfXs_F37ihOz-7Z17YJn4TXkgojVAbTp-z_bBovmYvk7GTbDQ6fbTm2ZYpe6cxs_uXnrRS58-ASBA4ZA
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB21WxBc-EYsFLAE3LC2nnjX9gGhUqi6dHeJRIFyMv5Iql52l24B8af4jXicRFWFBKceyDEZRUn8PDN23swDeLqFznitIvcqBi6dMtwXaLhEF71RGDFXeH-cqNlMHx6acg1-dbUwRKvsfGJ21HERaI98QGprKRsQI3y5_MpJNYr-rnYSGg0s9qufP9KSbfVi_DqN7zPE3TcHO3u8VRXgAakfp8bolR-GKtZuWNWiGukopJMuPZkPMi3CC4FReoyqxpjmn5Nx6FGGOohgfF2k-67DhiSw92CjHE_Lz53vL9KhmhJM5Cm2645RlpaZ7TkzGqQUSAzEgMpWO62uNh6uHy-WfwSFHOl2r_9v3-gGXGtzarbdTIKbsFbNb8HlzG0Nq9vwKRcZc6J-UTkOyzqgxJDKoGRlI6nD3lHH55R_M_Kljoj28yP-KgX5yLZzUGBtL9ojNs2y23fgw4W81V3ozRfz6h4wE4xwQRtUqpLaKCcrHMUwjIXxSkbdh61uVO2yaRti8-9-rS0BwRIQLAHBCtsAoQ_P0-jb1oWs_m3-5Jz523Ln_XkLu4x1HzY7pJyZnsHk_t8vP4YrewfTiZ2MZ_sP4CrSVkOm121C7_TkW_UQLoXvp8erk0ftPGDw5aJh9RswM0Dp
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2xiws7oqyW4IhJ7TixfWSrWEsl1pvlJUFcSkWB78d2UlCFEEIipxzGifXGGU_k92YAdppUSyO4w4Y7i5nmEpuUSsyodkZy6mhUeN9d8HZbPDzIzgi0PrUwz7069O_526pQcAVhTYgTic-hKc4zmSc-lyAJSYL-s5kmPVeOwngoVxJW91V6P4jIqb94JYwMA4UY8Lx-ftjQLjXqZ_ItVMf9pzX7XzOfg5k6A0X71ah5GCm6CzAZmaC2vwj3UZKLA1EqiFdQ7JoZ-ETRhahTNaBBV6E-ss9WUYg8OtDSu4_4wG-JDu3HEIrqyq2P6DI2qV6C29bxzeEJrrsvYEtD3VJBneEms4UrdVaUpMiFI0wz7T1oLCNSpIQ6ZqjjJXU-TmnmMkOZLS2x0pTpMox1n7vFCiBpJdFWSMp5wYTkmhU0dzZzqTScOdGA5gBt1auKbKh4OC6ECpipgJkKmCmiKswasOtRVvUH1__dfHvI_KxzeD1sobwTGrA-cPKXaWjz59NQktPVv71zC6Y6Ry11cdo-X4NpGv7TIzdtHcZeX96KDZiw769P_ZfNuFg_APE64qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-category+Classification+Problem+Oriented+Subsampling-Based+Active+Learning+Method&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Shi%2C+Wei&rft.au=Feng%2C+Yanghe&rft.au=Cheng%2C+Guangquan&rft.au=Liu%2C+Shixuan&rft.date=2020-09-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1631&rft.issue=1&rft.spage=12003&rft_id=info:doi/10.1088%2F1742-6596%2F1631%2F1%2F012003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_1631_1_012003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon