Multi-category Classification Problem Oriented Subsampling-Based Active Learning Method
Traditional active learning methods have achieved gratifying results in the classification tasks of less categories such as binary classification, the application research of active learning in the field of big data problems still faces enormous challenges. Since many active learning query strategie...
Saved in:
| Published in: | Journal of physics. Conference series Vol. 1631; no. 1; pp. 12003 - 12011 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bristol
IOP Publishing
01.09.2020
|
| Subjects: | |
| ISSN: | 1742-6588, 1742-6596 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Traditional active learning methods have achieved gratifying results in the classification tasks of less categories such as binary classification, the application research of active learning in the field of big data problems still faces enormous challenges. Since many active learning query strategies need to perform matrix inversion, the amount of calculation increases exponentially with the increase of the scale of the problem, it is difficult to apply these active learning methods in large scale multi-category data classification task. In order to solve this problem, this paper designed a subsampling-based active learning model, and integrate unsupervised clustering algorithm with traditional active learning method, then conducted experiments on Binary Alphadigits and OMNIGLOT data sets. This paper compares the performance of five traditional active learning algorithms using this subsampling method, namely random sampling, uncertainty sampling, query-by-committee, density weighting and learning-based active learning. Through comparative experiments, the feasibility of active learning based on subsampling for solving the multi-category classification problem is verified, and it is found that the subsampling-based method can break the limitations of traditional active learning methods that cannot deal with large-scale data classification. |
|---|---|
| AbstractList | Traditional active learning methods have achieved gratifying results in the classification tasks of less categories such as binary classification, the application research of active learning in the field of big data problems still faces enormous challenges. Since many active learning query strategies need to perform matrix inversion, the amount of calculation increases exponentially with the increase of the scale of the problem, it is difficult to apply these active learning methods in large scale multi-category data classification task. In order to solve this problem, this paper designed a subsampling-based active learning model, and integrate unsupervised clustering algorithm with traditional active learning method, then conducted experiments on Binary Alphadigits and OMNIGLOT data sets. This paper compares the performance of five traditional active learning algorithms using this subsampling method, namely random sampling, uncertainty sampling, query-by-committee, density weighting and learning-based active learning. Through comparative experiments, the feasibility of active learning based on subsampling for solving the multi-category classification problem is verified, and it is found that the subsampling-based method can break the limitations of traditional active learning methods that cannot deal with large-scale data classification. |
| Author | Shi, Wei Liu, Shixuan Cheng, Guangquan Feng, Yanghe Liu, Zhong |
| Author_xml | – sequence: 1 givenname: Wei surname: Shi fullname: Shi, Wei organization: College of Systems Engineering National University of Defense Technology Changsha , China – sequence: 2 givenname: Yanghe surname: Feng fullname: Feng, Yanghe email: fengyanghe@yeah.net organization: College of Systems Engineering National University of Defense Technology Changsha , China – sequence: 3 givenname: Guangquan surname: Cheng fullname: Cheng, Guangquan organization: College of Systems Engineering National University of Defense Technology Changsha , China – sequence: 4 givenname: Shixuan surname: Liu fullname: Liu, Shixuan organization: College of Systems Engineering National University of Defense Technology Changsha , China – sequence: 5 givenname: Zhong surname: Liu fullname: Liu, Zhong organization: College of Systems Engineering National University of Defense Technology Changsha , China |
| BookMark | eNqFkFtLw0AQhRepYFv9DQZ8E2Kym002eazFKy0tVPFx2WvdkmbjbiL035sQqQiC8zLDmXNm4JuAUWUrBcAljG9gnOcRJBiFWVpkEcwSGMEohiiOkxMwPm5GxznPz8DE-11n6IqMwduyLRsTCtaorXWHYF4y7402nWBsFayd5aXaBytnVNUoGWxa7tm-Lk21DW-Z75SZaMynChaKuapTg6Vq3q08B6ealV5dfPcpeL2_e5k_hovVw9N8tggFIjgJcyQ54alQUrNUaaiyXELMMCsI4gLDIk8gkpgjSTSSCckYlilHWGgBRcF1MgVXw93a2Y9W-YbubOuq7iVFKYmLFMIMdS4yuISz3julae3MnrkDhTHtKdKeD-1Z0Z4ihXSg2CWTIWls_XP6_9T1H6nn9Xzz20hrqZMv7SCEVQ |
| Cites_doi | 10.1016/j.patcog.2018.12.027 10.1038/nature21056 10.1109/TMM.2002.1017738 10.1023/A:1007330508534 10.1613/jair.295 10.1109/ACCESS.2019.2946186 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1088/1742-6596/1631/1/012003 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| DocumentTitleAlternate | Multi-category Classification Problem Oriented Subsampling-Based Active Learning Method |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10_1088_1742_6596_1631_1_012003 JPCS_1631_1_012003 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX AEINN AFFHD CITATION OVT PHGZM PHGZT PQGLB 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2743-82db7b5cedfa5ef1e68d14a4a972bc4198312d4b2d7f2d376a4d5b24cfc1c9bf3 |
| IEDL.DBID | P5Z |
| ISSN | 1742-6588 |
| IngestDate | Fri Jul 25 04:35:13 EDT 2025 Sat Nov 29 04:52:25 EST 2025 Thu Jan 07 14:56:20 EST 2021 Wed Aug 21 03:33:31 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2743-82db7b5cedfa5ef1e68d14a4a972bc4198312d4b2d7f2d376a4d5b24cfc1c9bf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2570951162?pq-origsite=%requestingapplication% |
| PQID | 2570951162 |
| PQPubID | 4998668 |
| PageCount | 9 |
| ParticipantIDs | iop_journals_10_1088_1742_6596_1631_1_012003 proquest_journals_2570951162 crossref_primary_10_1088_1742_6596_1631_1_012003 |
| PublicationCentury | 2000 |
| PublicationDate | 20200901 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 20200901 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2020 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Huang (JPCS_1631_1_012003bib11) 2019; 7 Settles (JPCS_1631_1_012003bib4) 2008 Esteva (JPCS_1631_1_012003bib1) 2017; 542 Huang (JPCS_1631_1_012003bib10) 2019; 14 Kai (JPCS_1631_1_012003bib13) 2006 JPCS_1631_1_012003bib19 Pinar (JPCS_1631_1_012003bib16) 2007 Lewis (JPCS_1631_1_012003bib3) 1994 McCallum (JPCS_1631_1_012003bib6) 1998 Zhang (JPCS_1631_1_012003bib15) 2002; 4 Hieu (JPCS_1631_1_012003bib17) 2004 Burr (JPCS_1631_1_012003bib18) 2008 Cohn (JPCS_1631_1_012003bib8) 1996; 4 Zhou (JPCS_1631_1_012003bib2) 2017 Yang (JPCS_1631_1_012003bib14) 2019; 89 Nicholas (JPCS_1631_1_012003bib7) 2001 Freund (JPCS_1631_1_012003bib5) 1997; 28 Zhang (JPCS_1631_1_012003bib9) 2000 JPCS_1631_1_012003bib20 Brinker (JPCS_1631_1_012003bib12) 2003 |
| References_xml | – start-page: 116 year: 2007 ident: JPCS_1631_1_012003bib16 – start-page: 4761 year: 2017 ident: JPCS_1631_1_012003bib2 – volume: 89 start-page: 22 year: 2019 ident: JPCS_1631_1_012003bib14 article-title: Single shot active learning using pseudo annotators publication-title: Pattern Recognition doi: 10.1016/j.patcog.2018.12.027 – start-page: 1070 year: 2008 ident: JPCS_1631_1_012003bib4 – volume: 542 start-page: 115 year: 2017 ident: JPCS_1631_1_012003bib1 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – ident: JPCS_1631_1_012003bib19 – ident: JPCS_1631_1_012003bib20 – volume: 4 start-page: 260 year: 2002 ident: JPCS_1631_1_012003bib15 article-title: An active learning framework for content-based information retrieval publication-title: IEEE Trans. on Multimedia doi: 10.1109/TMM.2002.1017738 – start-page: 1191 year: 2000 ident: JPCS_1631_1_012003bib9 – start-page: 350 year: 1998 ident: JPCS_1631_1_012003bib6 – volume: 14 start-page: 1 year: 2019 ident: JPCS_1631_1_012003bib10 article-title: On the improvement of reinforcement active learning with the involvement of cross entropy to address one-shot learning problem publication-title: PLoS ONE – volume: 28 start-page: 133 year: 1997 ident: JPCS_1631_1_012003bib5 article-title: Selective sampling using the query by committee algorithm publication-title: Machine Learning doi: 10.1023/A:1007330508534 – start-page: 3 year: 1994 ident: JPCS_1631_1_012003bib3 – start-page: 59 year: 2003 ident: JPCS_1631_1_012003bib12 – start-page: 1070 year: 2008 ident: JPCS_1631_1_012003bib18 – volume: 4 start-page: 129 year: 1996 ident: JPCS_1631_1_012003bib8 article-title: Active learning with statistical models publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.295 – start-page: 1081 year: 2006 ident: JPCS_1631_1_012003bib13 – start-page: 623 year: 2004 ident: JPCS_1631_1_012003bib17 – start-page: 441 year: 2001 ident: JPCS_1631_1_012003bib7 – volume: 7 start-page: 147204 year: 2019 ident: JPCS_1631_1_012003bib11 article-title: A reinforcement one-shot active learning approach for aircraft type recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2946186 |
| SSID | ssj0033337 |
| Score | 2.233622 |
| Snippet | Traditional active learning methods have achieved gratifying results in the classification tasks of less categories such as binary classification, the... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 12003 |
| SubjectTerms | Active learning Algorithms Classification Clustering Machine learning multi-category classification Physics Random sampling Subsampling-based active learning method Teaching methods traditional active learning algorithm |
| SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwGA06FXzxLk6nBPTRuCZN2_RxikNEt4GX7S3kOnzZxjb9_SZpixQREexTH7604SQ93yn5LgBcRCZVToYaRKQViGY0QVJIhaKU2NwwqeLQDOb1Iev12GiU13JhprOS-q_cbVEouICwDIhjbaehCUqTPG07LYHbuO3zP33Bz7WYOW_u9nQ_HlZsHLsrK5Ii_SDGqhivnx9U81CrbhbfaDr4nu72f8x6B2yVyhN2ihG7YMVM9sBGiABVi30wDKm4yAdI-aQVGLpl-jiisHRwUDSegX1fF9mpVOgZR_hw9MkYXTtXqGEnUCcsK7aO4WNoTn0AXrq3zzd3qOy6gBTx9UoZ0TKTiTLaisRYbFKmMRVU5BmRiuKcxZhoKonOLNGOnwTViSRUWYVVLm18CBqT6cQcARjbzHGC5wgn20ykWSSlEIo4v8xUbGgTRBXSfFYU1-DhUJwx7vHiHi_u8eKYF3g1waVDmJcf2uJ38_Oa-f3g5qluwWfaNkGrWuAvU9_ez8lPnJLjv73zBGwS_1MeAtFaoLGcv5tTsK4-lm-L-VnYnZ8kft3O priority: 102 providerName: IOP Publishing |
| Title | Multi-category Classification Problem Oriented Subsampling-Based Active Learning Method |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/1631/1/012003 https://www.proquest.com/docview/2570951162 |
| Volume | 1631 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: P5Z dateStart: 20040801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: PIMPY dateStart: 20040801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6xLUhcKK-KpWVlCY5YGztO4pxQW7WCqt1GPNrCxfJz1cvu0i38fjyOo6qqBAdydOYQ5bO_Gdsz8wG8K3xtYxjqKTdBU9GIihptLC1qHlovjS2TGMz5STObycvLtssHbuucVjlwYiJqt7R4Rj5FtbUYDbCaf1j9pKgahberWUJjBJvYJQGlG7rqx8DEZXyaviCS0-hp5ZDfFTd9eaytpzEgYVM2xSLSQTkre6fR1XJ1j6KT3zna-t8vfgpPcsRJ9vop8gwe-MVzeJQyP-36BVykElyKiVFYrEKSSibmDyXISNcLzpAz7Icco1OCTKMxDX0xp_vRBTqylyiT5E6tc3KaRKlfwrejw68HH2lWW6CWY59SyZ1pTGW9C7rygflaOia00G3DjRWslSXjThjumsBd5CUtXGW4sMEy25pQbsPGYrnwr4CUoYlcgNwQwzVfOFkYo7Xl0R9LW3oxhmL4y2rVN9VQ6TJcSoXAKARGITCKqR6YMbyPaKi8wNb_Nn97x_y4O_hy10KtXBjD7oDcrektbK___noHHnPcfKeEs13YuLn-5d_AQ_v75mp9PYHN_cNZ93kCo7PyYpLmZRzrPp123_8AAnLlDA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2126JyKS1QsdBSS8ANaxPHmzgHhNpC1aW7SyQKlJPxZ9XL7tLth_qn-hvxOImqCglOPZBjMoqU-PnN2J6ZB_A6cbkJYaijTHtFecH7VCttaJIzXzqhTRbFYL4Ni_FYHB-X1QLctLUwmFbZcmIkajs1uEfeQ7W1EA2kOXs_-0VRNQpPV1sJjRoWh-76KizZ5u8GH8L4vmFs_-PR3gFtVAWoYdiPUzCrC903znrVdz51ubApV1yVBdOGh0V4ljLLNbOFZzbMP8VtXzNuvElNqX0W3rsISxzB3oGlajCqfrTcn4WrqEswGQ2-XbQZZWGZ2dwr814IgdJe2sOy1Varq_GHi6fT2R9OIXq6_Uf_2z9ag9UmpiY79SRYhwU3eQwPYm6rmT-B77HImGLqF5bjkKgDihlSEZSkqiV1yGfs-Bzib4JcqjDRfnJCd4OTt2QnOgXS9KI9IaMou_0Uvt7LV21AZzKduGdAMl8EtkP2CwGpS6xItFbKsBBxCJM53oWkHVU5q9uGyHjcL4REIEgEgkQgyFTWQOjC2zD6sqGQ-b_NX90x_1TtfblrIWfWd2GzRcqt6S1Mnv_98TasHByNhnI4GB--gIcMtxpiet0mdM7PLtwWLJvL89P52ctmHhD4ed-w-g3nEEFz |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB3BUlAvhRYQCxQstceaxI6TOMct7Yq2dFmppXCz_Im4LCsW-P31ONlWqwpVSOSUwzixnp03E_nNDMD73Fc2hqGechM0FbUoqdHG0rziofHS2CI1g_l1Wo9G8vKyGS_B8E8uzM20o_6jeNsWCm4h7ARxMosxNKdV2VRZjCVYxjLM_8yLbOrCMqxguRLc3WfFxZyRi3jVbWIkDpRyrvN6_GELXmo5zuQfqk7-Z7j-XDPfgFddBEoG7ajXsOQnb2A1KUHtbBMuUkouRaEUJq-Q1DUT9URpCcm4bUBDzrA-coxWCTKPRln65Ip-jC7RkUGiUNJVbr0i31OT6i04H37-eXxCu-4L1HKsWyq5M7UprXdBlz4wX0nHhBa6qbmxgjWyYNwJw10duIs8pYUrDRc2WGYbE4pt6E1uJn4HSBHqyA3IFTF887mTuTFaWx79s7SFF33I52iraVtkQ6XDcSkVYqYQM4WYKaZazPrwIaKsug9u9n_zdwvmX8fHPxYtVFyEPuzPF_mvKbb5i2Eoq_ju0955CGvjT0N1-mX0bQ9ecvxPT9q0fejd3d77t_DCPtxdz24P0mb9DTDI4zY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-category+Classification+Problem+Oriented+Subsampling-Based+Active+Learning+Method&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Shi%2C+Wei&rft.au=Feng%2C+Yanghe&rft.au=Cheng%2C+Guangquan&rft.au=Liu%2C+Shixuan&rft.date=2020-09-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1631&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1631%2F1%2F012003 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |