A synthetic data generation procedure for univariate circular data with various outliers scenarios using Python programming language

Synthetic data is artificial data that is created based on the statistical properties of the original data. The aim of this study is to generate a synthetic or simulated data for univariate circular data that follow von Mises (VM) distribution with various outliers scenario using Python programming...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series Vol. 1988; no. 1; pp. 12111 - 12119
Main Authors: Zulkipli, N S, Satari, S Z, Wan Yusoff, W N S
Format: Journal Article
Language:English
Published: Bristol IOP Publishing 01.07.2021
Subjects:
ISSN:1742-6588, 1742-6596
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Synthetic data is artificial data that is created based on the statistical properties of the original data. The aim of this study is to generate a synthetic or simulated data for univariate circular data that follow von Mises (VM) distribution with various outliers scenario using Python programming language. The procedure of formulation a synthetic data generation is proposed in this study. The synthetic data is generated from various combinations of seven sample size, n and five concentration parameters, K. Moreover, a synthetic data will be generated by formulating a data generation procedure with different condition of outliers scenarios. Three outliers scenarios are proposed in this study to introduce the outliers in synthetic dataset by placing them away from inliers at a specific distance. The number of outliers planted in the dataset are fixed with three outliers. The synthetic data is randomly generated by using Python library and package which are ‘numpy’, ‘random’ and von Mises’. In conclusion, the synthetic data of univariate circular data from von Mises distribution is generated and the outliers are successfully introduced in the dataset with three outliers scenarios using Python. This study will be valuable for those who are interested to study univariate circular data with outliers and choose Python as an analysis tool.
AbstractList Synthetic data is artificial data that is created based on the statistical properties of the original data. The aim of this study is to generate a synthetic or simulated data for univariate circular data that follow von Mises (VM) distribution with various outliers scenario using Python programming language. The procedure of formulation a synthetic data generation is proposed in this study. The synthetic data is generated from various combinations of seven sample size, n and five concentration parameters, K. Moreover, a synthetic data will be generated by formulating a data generation procedure with different condition of outliers scenarios. Three outliers scenarios are proposed in this study to introduce the outliers in synthetic dataset by placing them away from inliers at a specific distance. The number of outliers planted in the dataset are fixed with three outliers. The synthetic data is randomly generated by using Python library and package which are ‘numpy’, ‘random’ and von Mises’. In conclusion, the synthetic data of univariate circular data from von Mises distribution is generated and the outliers are successfully introduced in the dataset with three outliers scenarios using Python. This study will be valuable for those who are interested to study univariate circular data with outliers and choose Python as an analysis tool.
Synthetic data is artificial data that is created based on the statistical properties of the original data. The aim of this study is to generate a synthetic or simulated data for univariate circular data that follow von Mises (VM) distribution with various outliers scenario using Python programming language. The procedure of formulation a synthetic data generation is proposed in this study. The synthetic data is generated from various combinations of seven sample size, n and five concentration parameters, K. Moreover, a synthetic data will be generated by formulating a data generation procedure with different condition of outliers scenarios. Three outliers scenarios are proposed in this study to introduce the outliers in synthetic dataset by placing them away from inliers at a specific distance. The number of outliers planted in the dataset are fixed with three outliers. The synthetic data is randomly generated by using Python library and package which are ‘numpy’, ‘random’ and von Mises’. In conclusion, the synthetic data of univariate circular data from von Mises distribution is generated and the outliers are successfully introduced in the dataset with three outliers scenarios using Python. This study will be valuable for those who are interested to study univariate circular data with outliers and choose Python as an analysis tool.
Author Wan Yusoff, W N S
Zulkipli, N S
Satari, S Z
Author_xml – sequence: 1
  givenname: N S
  surname: Zulkipli
  fullname: Zulkipli, N S
  organization: Centre for Mathematical Sciences, College of Computing and Applied Sciences, Universiti Malaysia Pahang , Malaysia
– sequence: 2
  givenname: S Z
  surname: Satari
  fullname: Satari, S Z
  organization: Centre for Mathematical Sciences, College of Computing and Applied Sciences, Universiti Malaysia Pahang , Malaysia
– sequence: 3
  givenname: W N S
  surname: Wan Yusoff
  fullname: Wan Yusoff, W N S
  organization: Centre for Mathematical Sciences, College of Computing and Applied Sciences, Universiti Malaysia Pahang , Malaysia
BookMark eNqFkFtLxDAQhYMoqKu_wYBvwrpN2iTtoyxeERTU5xDTSTeym6y5KPvuD7elogiCeUlm5jtnwtlH2847QOiIFKekqOsZERWdctbwGWmGclYQSgjZQnvfk-3vd13vov0YX4qi7I_YQx9nOG5cWkCyGrcqKdyBg6CS9Q6vg9fQ5gDY-ICzs28qWJUAaxt0XqowKt5tWuBh5HPEPqelhRBx1OCGXsQ5Wtfh-01ajJ5dUKvV0Foq12XVwQHaMWoZ4fDrnqCni_PH-dX09u7yen52O9VUVGTaGMOBUmgZiIJRo3TLOaPPVEDN65I9a8G0aHRFCWdF01AlKl6WtVbCgGmqcoKOR9_-E68ZYpIvPgfXr5SUcdJUjHDaU2KkdPAxBjByHexKhY0khRwil0OYcghWDpFLIsfIe-XJqLR-_WN9cz9_-A3KdWt6uPwD_m_FJ391lWg
Cites_doi 10.15282/daam.v1i01.5085
10.1016/j.ins.2014.01.015
10.1080/03610918108812225
10.1080/03610918.2014.932799
10.1111/j.2517-6161.1975.tb01550.x
10.1080/02664763.2017.1342779
10.1016/S0167-9473(98)00021-8
10.25046/aj050212
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1988/1/012111
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: IOPscience
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1988_1_012111
JPCS_1988_1_012111
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2741-9ff6e22ed5e7052facd6652b27e86835bc75c79c421650992a746338ca7fef943
IEDL.DBID O3W
ISSN 1742-6588
IngestDate Sun Nov 09 08:07:20 EST 2025
Sat Nov 29 03:39:25 EST 2025
Wed Aug 21 03:32:57 EDT 2024
Tue Aug 20 22:16:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2741-9ff6e22ed5e7052facd6652b27e86835bc75c79c421650992a746338ca7fef943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/1988/1/012111
PQID 2561945162
PQPubID 4998668
PageCount 9
ParticipantIDs crossref_primary_10_1088_1742_6596_1988_1_012111
proquest_journals_2561945162
iop_journals_10_1088_1742_6596_1988_1_012111
PublicationCentury 2000
PublicationDate 20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 20210701
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Fisher (JPCS_1988_1_012111bib2) 1993
Mohamed (JPCS_1988_1_012111bib6) 2016; 45
Satari (JPCS_1988_1_012111bib9) 2019
Mardia (JPCS_1988_1_012111bib3) 1975; 37
Alkasadi (JPCS_1988_1_012111bib7) 2018; 13
Di (JPCS_1988_1_012111bib10) 2019; 1366
Mokhtar (JPCS_1988_1_012111bib8) 2017; 45
Philip Chen (JPCS_1988_1_012111bib11) 2014; 275
Sebert (JPCS_1988_1_012111bib13) 1998; 27
Jammalamadaka (JPCS_1988_1_012111bib1) 2001
Zulkipli (JPCS_1988_1_012111bib12) 2020; 1
Best (JPCS_1988_1_012111bib4) 1981; 10
Satari (JPCS_1988_1_012111bib5) 2020; 5
References_xml – start-page: 2059
  year: 2019
  ident: JPCS_1988_1_012111bib9
  article-title: Single-linkage method to detect multiple outliers with different outlier scenarios in circular regression model
– volume: 1
  start-page: 31
  year: 2020
  ident: JPCS_1988_1_012111bib12
  article-title: Descriptive analysis of circular data with outliers using Python programming language
  publication-title: Data Analytics and Applied Mathematics (DAAM)
  doi: 10.15282/daam.v1i01.5085
– volume: 275
  start-page: 314
  year: 2014
  ident: JPCS_1988_1_012111bib11
  article-title: Data-intensive applications, challenges, techniques and technologies: A survey on Big Data
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.01.015
– year: 2001
  ident: JPCS_1988_1_012111bib1
– volume: 10
  start-page: 493
  year: 1981
  ident: JPCS_1988_1_012111bib4
  article-title: The bias of the maximum likelihood estimators of the von Mises-Fisher concentration parameters
  publication-title: Communication in Statistics-Simulation and Computation
  doi: 10.1080/03610918108812225
– volume: 45
  start-page: 2904
  year: 2016
  ident: JPCS_1988_1_012111bib6
  article-title: A New Discordancy Test in Circular Data Using Spacings Theory
  publication-title: Communications in Statistics-Simulation and Computation
  doi: 10.1080/03610918.2014.932799
– volume: 37
  start-page: 349
  year: 1975
  ident: JPCS_1988_1_012111bib3
  article-title: Statistics of directional data
  publication-title: Journal of the Royal Statistical Society B.
  doi: 10.1111/j.2517-6161.1975.tb01550.x
– volume: 13
  start-page: 9083
  year: 2018
  ident: JPCS_1988_1_012111bib7
  article-title: Outliers Detection in Multiple Circular Regression Model via DFBETAc Statistic
  publication-title: International Journal of Applied Engineering Research
– volume: 45
  start-page: 1041
  year: 2017
  ident: JPCS_1988_1_012111bib8
  article-title: A clustering approach to detect multiple outliers in linear functional relationship model for circular data
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664763.2017.1342779
– volume: 1366
  year: 2019
  ident: JPCS_1988_1_012111bib10
  article-title: Outlier detection in circular regression model using minimum spanning tree method
  publication-title: Journal of Physics: Conference Series
– volume: 27
  start-page: 461
  year: 1998
  ident: JPCS_1988_1_012111bib13
  article-title: A clustering algorithm for identifying multiple outliers in linear regression
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/S0167-9473(98)00021-8
– year: 1993
  ident: JPCS_1988_1_012111bib2
– volume: 5
  start-page: 95
  year: 2020
  ident: JPCS_1988_1_012111bib5
  article-title: Review on outliers identification methods for univariate circular biological data
  publication-title: Advances in Science, Technology and Engineering Systems
  doi: 10.25046/aj050212
SSID ssj0033337
Score 2.2710998
Snippet Synthetic data is artificial data that is created based on the statistical properties of the original data. The aim of this study is to generate a synthetic or...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12111
SubjectTerms Data analysis
Datasets
Inliers (landforms)
Outliers (statistics)
Programming languages
Python
Synthetic data
SummonAdditionalLinks – databaseName: ProQuest advanced technologies & aerospace journals
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6u4MVdHDcCejTMNJ2myUlEFPEgAyqIl5BmkTnYGaeO4N0f7ntpiwyCHuytyWspfOlb0q_fI-QkdQGcnhDMOGlZP5WGQR4XWE9JK3pGFS4zsdlEfnsrHx_VoNlwqxpaZesTo6N2I4t75F0IzVBvZ4ngZ-NXhl2j8Otq00JjniyiSgK2bhhkT60nTuHI6x8iOYNIK1t-FxR9zZgSXai64bQbtc6Smeg0PxyNf7joGHeu1v77xOtktck46Xm9RDbInC83yXJkftpqi3ye0-qjhDQQpinyRelzVKJGwGgMb2468RRyWzoth-9QWkN2Su1wEgms9RW4mUtxajStKFKMsL82RZ0oHKsokuuf6eADdQpowwh7waF2t3SbPFxd3l9cs6Y1A7Ood8NUCMJz7l3m817Gg7FOiIwXPPdSQFJX2DyzubJ9nqBEn-Im7wuohq3Jgw-qn-6QhXJU-l1CUyGsUd4bBeYBFpSVyiVww6JIAueuQ3otJHpcK3Do-OVcSo0oakRRI4o60TWKHXIK0Onmbaz-Nj-eMb8ZXNzNWuixCx1y0ML8bfqN8d7v0_tkhSMbJhJ9D8jC22TqD8mSfX8bVpOjuGy_AIOv8r8
  priority: 102
  providerName: ProQuest
Title A synthetic data generation procedure for univariate circular data with various outliers scenarios using Python programming language
URI https://iopscience.iop.org/article/10.1088/1742-6596/1988/1/012111
https://www.proquest.com/docview/2561945162
Volume 1988
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOPscience
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELbKS-qFlpe6LUWW4NiwG2fj2MctAgESSwStClwsxw-0h2ZXG3Yl7vxwZpxE1QpVCIkcosQZO9bYmYfzeYaQg8R6EHqcR9oKE_UToSOw43zUk8LwnpaFTXVINpENh-LmRi7shRlPGtF_CJd1oOCahQ0gTnTBhmYRTyXvgsMMt90Qpgw8oJVEgDaHOX2Z_GmlcQJHVm-KxEpCtBiv_ze0oKGWoBcvxHTQPSef3qPXn8l6Y3nSQV1jg3xw5SZZCwhQU22RpwGtHkswB-ExRdwovQ8RqXHgaFBzdjZ1FGxcOitHc3CxwUqlZjQNQNa6Bi7qUnw0nlUUoUaYZ5tivCgsqyiC7O9p_ojxCmiDDPuLRe2q6Tb5fXL86-g0alI0RAbj3kTSe-4YczZ1WS9lXhvLecoKljnBwbgrTJaaTJo-izFUn2Q663Pwio3OvPOyn-yQ5XJcui-EJpwbLZ3TEsg9TCwjpI2hwaKIPWO2Q3rtsKhJHYlDhT_oQihkrkLmKmSuilXN3A75AcOhmq-yep18f4H8PD-6XqRQE-s7ZLedDf9IwXCMJeY8Zl_f9s5v5CNDlEwAAO-S5YfpzH0nq2b-MKqme2Tl5_Ewv9oLUxrOeXoHZfnZRX77DEGb9Dc
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61KQguvBGBAisBN6zEa3vtPSBUFaqGtlEkilRO2_U-qhxwQpwU5c7v4Tcys7ZVRUhw6gHfvDv2Yf3Na_3tDMDrxHo0ekJE2hYmSpNCRxjH-WgoCyOGWpY206HZRD4eF2dncrIFv7qzMESr7GxiMNR2ZmiPfICuGfPtLBb8_fx7RF2j6O9q10KjgcWRW__AlK1-N_qA3_cN5wcfT_cPo7arQGSoVEskvReOc2czlw8z7rWxQmS85LkrBMYjpckzk0uT8piqy0mu81RgImd07p2XaYLv3YadlMDeg53J6GTytbP9CV55cwSTR-jbi45RhmlmOybFAPN8vB2E6mrxhj_cns7mfziF4OkO7v5va3QP7rQxNdtrlOA-bLnqAdwM3FZTP4Sfe6xeVxjo4jQjRiy7CLW2CZIsOHC7WjiG0TtbVdNLjSq5dMxMF4Gi2zxB29WMpmarmhGJijqIM6qERWM1o-MDF2yypkoMrOW8faOhbj_4EXy5liV4DL1qVrknwBIhjJbOaYniHlXGFNLG-MKyjD3ntg_DDgJq3tQYUYEbUBSKUKMINYpQo2LVoKYPbxEqqrU39b_FX22If5rsf96UUHPr-7DbwepK9ApTT_8-_RJuHZ6eHKvj0fjoGdzmxP0JtOZd6C0XK_ccbpjL5bRevGiVhsH5dWPwN3owT2E
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9tgyFeYLBNFAazNB4JbZzGsR-nsYovlUqAtjfL8cfUh6VV01ba-_5w7pxkqEITQiJPiX12rLNzPjs__w7gbeYCGj0hEuOkTYaZNAn6cSEZKGnFwKjS5SYGmyjGY3l5qSZbMLo7CzObt6b_Pd42RMGNCltAnOyjD80TkSvRxwUzPvYjTVnan7uwDQ-IroRG97fsorPIGV5FczCSCkrZ4bzur2xjltrGlvxhquP8M3r6v1q-B09aD5SdNqWewZavnsNuRILaeh9uT1l9U6FbiNmM8KPsKjJTUweyON251cIz9HXZqpqucamN3iqz00UEtDYlaHOXUdZsVTOCHFG8bUa8UZRWMwLbX7HJDfEWsBYhdk1J3e7pAfwcnf84-5i0oRoSS_w3iQpBeM69y30xyHkw1gmR85IXXgp08kpb5LZQdshTouxT3BRDgatja4rggxpmh7BTzSr_AlgmhDXKe6NQPOAAs1K5FCssyzRw7now6LpGzxtGDh3_pEupScGaFKxJwTrVjYJ78A67RLdfZ_138ZMN8c-Ts--bEhp7rAdH3Yj4LYoOZKoo9jF_-W_vPIZHkw8j_fXT-MsreMwJOBMxwUews1ys_Gt4aNfLab14E0f2L8cF9VM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+synthetic+data+generation+procedure+for+univariate+circular+data+with+various+outliers+scenarios+using+Python+programming+language&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Zulkipli%2C+N+S&rft.au=Satari%2C+S+Z&rft.au=Wan+Yusoff%2C+W+N+S&rft.date=2021-07-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1988&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1988%2F1%2F012111&rft.externalDocID=JPCS_1988_1_012111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon