A Multi-sensor Data Fusion Algorithm Based on Unscented Kalman Filter for the Attitude Estimation of UAV

Aiming at the low accuracy of the inertial measurement unit and the error of the traditional attitude estimation algorithm, a UAV attitude estimation algorithm based on Unscented Kalman Filter (UKF) is proposed. The Euler angle method is used to describe the attitude algorithm model of the aircraft,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of physics. Conference series Ročník 1965; číslo 1; s. 12001 - 12006
Hlavní autori: Wu, Hongwei, Dou, Yinke, Liu, Jianlong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bristol IOP Publishing 01.07.2021
Predmet:
ISSN:1742-6588, 1742-6596
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Aiming at the low accuracy of the inertial measurement unit and the error of the traditional attitude estimation algorithm, a UAV attitude estimation algorithm based on Unscented Kalman Filter (UKF) is proposed. The Euler angle method is used to describe the attitude algorithm model of the aircraft, and on this basis, the system state equation and observation equation of the UAV are established; the unscented Kalman filter algorithm is used to achieve the calculation of the attitude angle of the aircraft. By using APM flight control data, the simulation experiment is compared with the traditional attitude estimation algorithm. The experimental results show that the proposed algorithm has a great improvement in reliability and accuracy compared with the attitude estimation algorithm using extended Kalman filter (EKF).
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1965/1/012001