A new decomposition law for inverses modular multiplicative on (ℤ/ϱℤ)
In modular arithmetic, we find a valuable concept, the so-called "modular multiplicative inverse" (symbolized by MMI). In precise words, if ℤ/ϱℤ denoted the residue system modulo ϱ, the (MMI) of a ∈ ℤ/ϱℤ, if it exists, is a−1 ∈ ℤ/ϱℤ, such that a×a−1≡1modϱ, where p ≡ q mod ϱ is the usual mo...
Uloženo v:
| Vydáno v: | Journal of physics. Conference series Ročník 1730; číslo 1; s. 12130 - 12134 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bristol
IOP Publishing
01.01.2021
|
| Témata: | |
| ISSN: | 1742-6588, 1742-6596 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In modular arithmetic, we find a valuable concept, the so-called "modular multiplicative inverse" (symbolized by MMI). In precise words, if ℤ/ϱℤ denoted the residue system modulo ϱ, the (MMI) of a ∈ ℤ/ϱℤ, if it exists, is a−1 ∈ ℤ/ϱℤ, such that a×a−1≡1modϱ, where p ≡ q mod ϱ is the usual modular representation of q ∈ ℤ/ϱℤ. This very special element it is one of the most wideley used mathematical concept in science, engineering and subject areas include the particle physics, the analysis and design of algorithms, data structures, databases, and computer architecture. In this paper, we establish a promising decomposition law for (MMI). In this respect, the main purpose of this paper it is shown that it is possible to express the (MMI) in terms of certain modular multiplicative inverse operators (MMIO) all, well-defined on Group of units pre-established. The main point to note here is that the result of this paper, which expands a result originally presented in [3], does not include any special conditions on the parameters involved. |
|---|---|
| Bibliografie: | ObjectType-Conference Proceeding-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 1742-6588 1742-6596 |
| DOI: | 10.1088/1742-6596/1730/1/012130 |