A new decomposition law for inverses modular multiplicative on (ℤ/ϱℤ)

In modular arithmetic, we find a valuable concept, the so-called "modular multiplicative inverse" (symbolized by MMI). In precise words, if ℤ/ϱℤ denoted the residue system modulo ϱ, the (MMI) of a ∈ ℤ/ϱℤ, if it exists, is a−1 ∈ ℤ/ϱℤ, such that a×a−1≡1modϱ, where p ≡ q mod ϱ is the usual mo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of physics. Conference series Ročník 1730; číslo 1; s. 12130 - 12134
Hlavní autor: Cortés-Vega, Luis A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.01.2021
Témata:
ISSN:1742-6588, 1742-6596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In modular arithmetic, we find a valuable concept, the so-called "modular multiplicative inverse" (symbolized by MMI). In precise words, if ℤ/ϱℤ denoted the residue system modulo ϱ, the (MMI) of a ∈ ℤ/ϱℤ, if it exists, is a−1 ∈ ℤ/ϱℤ, such that a×a−1≡1modϱ, where p ≡ q mod ϱ is the usual modular representation of q ∈ ℤ/ϱℤ. This very special element it is one of the most wideley used mathematical concept in science, engineering and subject areas include the particle physics, the analysis and design of algorithms, data structures, databases, and computer architecture. In this paper, we establish a promising decomposition law for (MMI). In this respect, the main purpose of this paper it is shown that it is possible to express the (MMI) in terms of certain modular multiplicative inverse operators (MMIO) all, well-defined on Group of units pre-established. The main point to note here is that the result of this paper, which expands a result originally presented in [3], does not include any special conditions on the parameters involved.
Bibliografie:ObjectType-Conference Proceeding-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1730/1/012130