Spectra of Boolean Graphs Over Finite Fields of Characteristic Two

With entries of the adjacency matrix of a simple graph being regarded as elements of  $\mathbb{F}_{2}$ , it is proved that a finite commutative ring $R$ with $1\neq 0$ is a Boolean ring if and only if either $R\in \{\mathbb{F}_{2},\mathbb{F}_{2}\times \mathbb{F}_{2}\}$ or the eigenvalues (in the alg...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Canadian mathematical bulletin Ročník 63; číslo 1; s. 58 - 65
Hlavní autori: Dillery, D. Scott, LaGrange, John D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Montreal Cambridge University Press 01.03.2020
Predmet:
ISSN:0008-4395, 1496-4287
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:With entries of the adjacency matrix of a simple graph being regarded as elements of  $\mathbb{F}_{2}$ , it is proved that a finite commutative ring $R$ with $1\neq 0$ is a Boolean ring if and only if either $R\in \{\mathbb{F}_{2},\mathbb{F}_{2}\times \mathbb{F}_{2}\}$ or the eigenvalues (in the algebraic closure of  $\mathbb{F}_{2}$ ) corresponding to the zero-divisor graph of $R$ are precisely the elements of $\mathbb{F}_{4}\setminus \{0\}$ . This is achieved by observing a way in which algebraic behavior in a Boolean ring is encoded within Pascal’s triangle so that computations can be carried out by appealing to classical results from number theory.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0008-4395
1496-4287
DOI:10.4153/S0008439519000365