The progressive mesh compression based on meaningful segmentation

Nowadays, both mesh meaningful segmentation (also called shape decomposition) and progressive compression are fundamental important problems, and some compression algorithms have been developed with the help of patch-type segmentation. However, little attention has been paid to the effective combina...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Visual computer Ročník 23; číslo 9-11; s. 651 - 660
Hlavní autoři: Cheng, Zhi-Quan, Liu, Hua-Feng, Jin, Shi-Yao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Springer Nature B.V 01.09.2007
Témata:
ISSN:0178-2789, 1432-2315
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Nowadays, both mesh meaningful segmentation (also called shape decomposition) and progressive compression are fundamental important problems, and some compression algorithms have been developed with the help of patch-type segmentation. However, little attention has been paid to the effective combination of mesh compression and meaningful segmentation. In this paper, to accomplish both adaptive selective accessibility and a reasonable compression ratio, we break down the original mesh into meaningful parts and encode each part by an efficient compression algorithm. In our method, the segmentation of a model is obtained by a new feature-based decomposition algorithm, which makes use of the salient feature contours to parse the object. Moreover, the progressive compression is an improved degree-driven method, which adapts a multi-granularity quantization method in geometry encoding to obtain a higher compression ratio. We provide evidence that the proposed combination can be beneficial in many applications, such as view-dependent rendering and streaming of large meshes in a compressed form.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-2789
1432-2315
DOI:10.1007/s00371-007-0128-5