Assessment of Microarray Data Clustering Results Based on a New Geometrical Index for Cluster Validity
A measurement of cluster quality is often needed for DNA microarray data analysis. In this paper, we introduce a new cluster validity index, which measures geometrical features of the data. The essential concept of this index is to evaluate the ratio between the squared total length of the data eige...
Gespeichert in:
| Veröffentlicht in: | Soft computing (Berlin, Germany) Jg. 11; H. 4; S. 341 - 348 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Heidelberg
Springer Nature B.V
01.02.2007
|
| Schlagworte: | |
| ISSN: | 1432-7643, 1433-7479 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | A measurement of cluster quality is often needed for DNA microarray data analysis. In this paper, we introduce a new cluster validity index, which measures geometrical features of the data. The essential concept of this index is to evaluate the ratio between the squared total length of the data eigen-axes with respect to the between-cluster separation. We show that this cluster validity index works well for data that contain clusters closely distributed or with different sizes. We verify the method using three simulated data sets, two real world data sets and two microarray data sets. The experiment results show that the proposed index is superior to five other cluster validity indices, including partition coefficients (PC), General silhouette index (GS), Dunn’s index (DI), CH Index and I-Index. Also, we have given a theorem to show for what situations the proposed index works well. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1432-7643 1433-7479 |
| DOI: | 10.1007/s00500-006-0087-1 |