Layered Media Parameter Inversion Method Based on Deconvolution Autoencoder and Self-Attention Mechanism Using GPR Data

Layered medium parameter inversion is a crucial technique in ground-penetrating radar (GPR) data processing and has wide application in civil engineering and geological exploration. In response to the issues of high computational complexity and low accuracy associated with existing methods, a novel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing Jg. 62; S. 1 - 14
Hauptverfasser: Yang, Xiaopeng, Sun, Haoran, Guo, Conglong, Li, Yixuan, Gong, Junbo, Qu, Xiaodong, Lan, Tian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Schlagworte:
ISSN:0196-2892, 1558-0644
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Layered medium parameter inversion is a crucial technique in ground-penetrating radar (GPR) data processing and has wide application in civil engineering and geological exploration. In response to the issues of high computational complexity and low accuracy associated with existing methods, a novel layered medium parameter inversion approach is proposed, comprising the deconvolution autoencoder and the parameter inversion network. First, the deconvolution autoencoder is introduced to solve the pulse response of layered medium systems in an unsupervised manner, which enhances the computational efficiency of deconvolution and decouples the data acquisition system from the supervised model. Subsequently, a parameter inversion network, including a self-attention module and a residual multilayer perceptron (MLP), is proposed to address the challenge posed by the excessively sparse pulse responses. The self-attention module calculates the autocorrelation of the pulse sequence, providing temporal delay information between pulses and reducing the sparsity of the pulse response to facilitate feature extraction. Meanwhile, the residual MLP, known for its low information loss and adaptability to different output dimensions, is employed for model-based and pixel-based inversions in situations with and without prior knowledge of the layer number, respectively. Finally, simulated and measured datasets are constructed to comprehensively train and evaluate the proposed method. The results demonstrate that the proposed method exhibits better performance of inversion accuracy, computational efficiency, robustness, generalization capability, and noise resistance. In addition, it remains applicable even when prior knowledge of the layer number is unknown.
AbstractList Layered medium parameter inversion is a crucial technique in ground-penetrating radar (GPR) data processing and has wide application in civil engineering and geological exploration. In response to the issues of high computational complexity and low accuracy associated with existing methods, a novel layered medium parameter inversion approach is proposed, comprising the deconvolution autoencoder and the parameter inversion network. First, the deconvolution autoencoder is introduced to solve the pulse response of layered medium systems in an unsupervised manner, which enhances the computational efficiency of deconvolution and decouples the data acquisition system from the supervised model. Subsequently, a parameter inversion network, including a self-attention module and a residual multilayer perceptron (MLP), is proposed to address the challenge posed by the excessively sparse pulse responses. The self-attention module calculates the autocorrelation of the pulse sequence, providing temporal delay information between pulses and reducing the sparsity of the pulse response to facilitate feature extraction. Meanwhile, the residual MLP, known for its low information loss and adaptability to different output dimensions, is employed for model-based and pixel-based inversions in situations with and without prior knowledge of the layer number, respectively. Finally, simulated and measured datasets are constructed to comprehensively train and evaluate the proposed method. The results demonstrate that the proposed method exhibits better performance of inversion accuracy, computational efficiency, robustness, generalization capability, and noise resistance. In addition, it remains applicable even when prior knowledge of the layer number is unknown.
Author Yang, Xiaopeng
Li, Yixuan
Qu, Xiaodong
Guo, Conglong
Gong, Junbo
Sun, Haoran
Lan, Tian
Author_xml – sequence: 1
  givenname: Xiaopeng
  orcidid: 0000-0003-2750-6944
  surname: Yang
  fullname: Yang, Xiaopeng
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Haoran
  orcidid: 0000-0001-7565-009X
  surname: Sun
  fullname: Sun, Haoran
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Conglong
  orcidid: 0009-0002-2062-3486
  surname: Guo
  fullname: Guo, Conglong
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Yixuan
  orcidid: 0000-0002-2013-5346
  surname: Li
  fullname: Li, Yixuan
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Junbo
  orcidid: 0009-0001-5299-3206
  surname: Gong
  fullname: Gong, Junbo
  organization: Chongqing Innovation Center, Beijing Institute of Technology, Chongqing, China
– sequence: 6
  givenname: Xiaodong
  orcidid: 0000-0002-2170-8978
  surname: Qu
  fullname: Qu, Xiaodong
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 7
  givenname: Tian
  orcidid: 0000-0002-2811-2261
  surname: Lan
  fullname: Lan, Tian
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
BookMark eNp9kMtOwzAQRS0EEqXwAewisU7xOC97WV6lUhFVH-vIcSYQlNpgO0X9exyVFQtWo9GcM6O5F-RUG42EXAOdAFBxu5mt1hNGWTpJkgy4SE_ICLKMxzRP01MyoiDymHHBzsmFcx-UQppBMSLfC3lAi3X0gnUro6W0cocebTTXe7SuNTpM_LupozvpAhb6B1RG703X-2E67b1BrUwdHKnraI1dE0-9R-2PsnqXunW7aOta_RbNlqvoQXp5Sc4a2Tm8-q1jsn163Nw_x4vX2fx-uogVKxIfs6yqlWp4xlghGDYigQISBTWtClVBVoma8QDkmDc8F1UmkQclAY6S5wDJmNwc935a89Wj8-WH6a0OJ0smgFOW5ykNFBwpZY1zFpvy07Y7aQ8l0HLItxzyLYd8y998g1P8cVTr5fC0t7Lt_jF_AMEdgnQ
CitedBy_id crossref_primary_10_1109_LGRS_2024_3449390
Cites_doi 10.1029/2012JE004053
10.1007/s10712-019-09556-6
10.1109/TAP.2021.3069519
10.1109/TGRS.2007.900980
10.1109/TGRS.2012.2189777
10.1016/j.ndteint.2017.04.002
10.1016/S0926-9851(99)00052-X
10.1109/TGRS.2022.3219138
10.1190/1.9781560801719.ch11
10.1109/9780470547052
10.1016/j.conbuildmat.2005.06.005
10.1190/1.1441367
10.1016/j.sigpro.2016.06.015
10.1109/TGRS.2020.3046454
10.1109/TGRS.2014.2313603
10.1109/TGRS.2019.2891206
10.1016/j.ndteint.2007.09.001
10.1109/ICASSP.1984.1172389
10.1117/12.541748
10.1016/j.ndteint.2006.09.001
10.1016/b978-0-444-53348-7.x0001-4
10.1002/2013JB010544
10.3141/1861-10
10.1109/TGRS.2018.2862627
10.1109/JSEN.2021.3050618
10.1016/j.cpc.2016.08.020
10.1016/j.ndteint.2015.03.001
10.1109/LGRS.2019.2953708
10.5555/3454287.3455008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3351894
DatabaseName CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 14
ExternalDocumentID 10_1109_TGRS_2024_3351894
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
AAYXX
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
7UA
8FD
AARMG
ABAZT
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c273t-25bdccf8522792ef931713c1d0b7cb15b9d28ccf6e6f869b5ae85bd318ea86113
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001173248900055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:27:31 EDT 2025
Sat Nov 29 03:32:31 EST 2025
Tue Nov 18 22:11:35 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-25bdccf8522792ef931713c1d0b7cb15b9d28ccf6e6f869b5ae85bd318ea86113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2013-5346
0000-0003-2750-6944
0009-0002-2062-3486
0000-0001-7565-009X
0009-0001-5299-3206
0000-0002-2170-8978
0000-0002-2811-2261
PQID 2918026640
PQPubID 85465
PageCount 14
ParticipantIDs proquest_journals_2918026640
crossref_primary_10_1109_TGRS_2024_3351894
crossref_citationtrail_10_1109_TGRS_2024_3351894
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationYear 2024
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
Vaswani (ref31); 30
ref19
ref18
ref24
ref26
ref25
ref20
Al-Qadi (ref16) 2004; 73
ref22
ref21
ref28
ref27
ref29
ref8
ref7
Li (ref23) 2019
ref9
ref4
ref3
ref6
ref5
Sakamoto (ref14) 1986; 81
References_xml – ident: ref4
  doi: 10.1029/2012JE004053
– ident: ref30
  doi: 10.1007/s10712-019-09556-6
– ident: ref24
  doi: 10.1109/TAP.2021.3069519
– ident: ref1
  doi: 10.1109/TGRS.2007.900980
– ident: ref26
  doi: 10.1109/TGRS.2012.2189777
– ident: ref3
  doi: 10.1016/j.ndteint.2017.04.002
– volume: 81
  start-page: 26853
  volume-title: Akaike Information Criterion Statistics
  year: 1986
  ident: ref14
– ident: ref2
  doi: 10.1016/S0926-9851(99)00052-X
– ident: ref20
  doi: 10.1109/TGRS.2022.3219138
– ident: ref29
  doi: 10.1190/1.9781560801719.ch11
– volume: 30
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref31
  article-title: Attention is all you need
– ident: ref27
  doi: 10.1109/9780470547052
– ident: ref9
  doi: 10.1016/j.conbuildmat.2005.06.005
– ident: ref8
  doi: 10.1190/1.1441367
– volume: 73
  start-page: 28
  issue: 501
  year: 2004
  ident: ref16
  article-title: Use of GPR for thickness measurement and quality control of flexible pavements
  publication-title: J. Assoc. Asphalt Paving Technol.
– ident: ref6
  doi: 10.1016/j.sigpro.2016.06.015
– ident: ref21
  doi: 10.1109/TGRS.2020.3046454
– ident: ref12
  doi: 10.1109/TGRS.2014.2313603
– ident: ref18
  doi: 10.1109/TGRS.2019.2891206
– ident: ref10
  doi: 10.1016/j.ndteint.2007.09.001
– ident: ref13
  doi: 10.1109/ICASSP.1984.1172389
– year: 2019
  ident: ref23
  article-title: Deep-learning inversion of seismic data
  publication-title: arXiv:1901.07733
– ident: ref15
  doi: 10.1117/12.541748
– ident: ref28
  doi: 10.1016/j.ndteint.2006.09.001
– ident: ref5
  doi: 10.1016/b978-0-444-53348-7.x0001-4
– ident: ref25
  doi: 10.1002/2013JB010544
– ident: ref7
  doi: 10.3141/1861-10
– ident: ref11
  doi: 10.1109/TGRS.2018.2862627
– ident: ref22
  doi: 10.1109/JSEN.2021.3050618
– ident: ref33
  doi: 10.1016/j.cpc.2016.08.020
– ident: ref17
  doi: 10.1016/j.ndteint.2015.03.001
– ident: ref19
  doi: 10.1109/LGRS.2019.2953708
– ident: ref32
  doi: 10.5555/3454287.3455008
SSID ssj0014517
Score 2.4476738
Snippet Layered medium parameter inversion is a crucial technique in ground-penetrating radar (GPR) data processing and has wide application in civil engineering and...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Accuracy
Adaptability
Autocorrelation
Civil engineering
Computational efficiency
Computer applications
Computing time
Data acquisition
Data analysis
Data processing
Deconvolution
Feature extraction
Geological surveys
Ground penetrating radar
Inversions
Mathematical models
Modules
Multilayer perceptrons
Parameters
Radar
Robustness (mathematics)
Title Layered Media Parameter Inversion Method Based on Deconvolution Autoencoder and Self-Attention Mechanism Using GPR Data
URI https://www.proquest.com/docview/2918026640
Volume 62
WOSCitedRecordID wos001173248900055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKAAkeEAwmNgbyA09UGXHSuPZj-eoeyjRtBZWnKHacqVKVTGvSlf-NP4472wktE4g98BI1rnNJe7_cnc_3QchrBTa4jgsRhLqIA9R4gcwHLEiYKpSKEiVtVtrXyfDkRMxm8rTX-9HmwqwWw7IU67W8_K-shjFgNqbO3oLdHVEYgM_AdDgC2-H4T4yfZN-x_6bdgsnAQsToK6yEiBU1rG8MvsGu0f13oMBy3Cz4gIvilX-o_qipK6xuiUUmbFynWRTBqK59XORng7nC2FrDRRuMT88AOnW2aeXiChKbT7SdyO2WxIWp2hwiG9NuACSmv8QAeq89Ufh49_VsnmFfr278vLHS8TgDxHZwHjfOz1uVF4vq19yJDVD4Nl83fqp3args6tbDKXkAq0Anoo2XygmAibtCka3Y9kLcyV22ocBdUupN1WArq07HZ-dHeMejOE6YcA2Wt8tw_6Yeu6BFu1wKZYokUiSRehJ3yN1omEjhsge7PaxBwnyyvvtBfk8dSLy98RTbVtG2UWAtnelj8sgvUejIQesJ6ZlylzzcKFy5S-7bwGG9fEquPdyohRvt4EY7uFEHN2rhRuF8C250A24UcEG34UY7uFELNwpwowi3Z-TLp4_T98eBb-YRaLCQ6wBe-1zrQiS2ZKUpJBiuLNYsD9VQKwZCIY8ETOCGF4JLlWRGwCWgckwmOGPxHtkpq9I8J1RxkQnDRaSkGAgNBhVoKZ1wnZgwVFm0T8L2z0y1r3SPDVcW6R9ZuE_edJdcujIvf5t82HIo9S_-Mo0k1lLkfBAe3IbWC_IAT51T75Ds1FeNeUnu6VU9X169soD6CdvIqiE
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layered+Media+Parameter+Inversion+Method+Based+on+Deconvolution+Autoencoder+and+Self-Attention+Mechanism+Using+GPR+Data&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Yang%2C+Xiaopeng&rft.au=Sun%2C+Haoran&rft.au=Guo%2C+Conglong&rft.au=Li%2C+Yixuan&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2024.3351894&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3351894
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon