Decidability of NP-Complete Problems

An analysis of the undecidability of Diophantine equations showed that problems of recognition of the properties of the NP class are decidable, i.e., a non-deterministic algorithm or exhaustive search at the problem input gives a positive or negative answer. For polynomial Diophantine equations, suc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cybernetics and systems analysis Ročník 58; číslo 6; s. 914 - 916
Hlavní autori: Vagis, A. A., Gupal, A. M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.11.2022
Springer
Springer Nature B.V
Predmet:
ISSN:1060-0396, 1573-8337
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:An analysis of the undecidability of Diophantine equations showed that problems of recognition of the properties of the NP class are decidable, i.e., a non-deterministic algorithm or exhaustive search at the problem input gives a positive or negative answer. For polynomial Diophantine equations, such a non-deterministic algorithm does not exist. A simple version of Gödel’s theorem on the incompleteness of arithmetic follows from the undecidability of Diophantine equations.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1060-0396
1573-8337
DOI:10.1007/s10559-023-00524-y