Decidability of NP-Complete Problems

An analysis of the undecidability of Diophantine equations showed that problems of recognition of the properties of the NP class are decidable, i.e., a non-deterministic algorithm or exhaustive search at the problem input gives a positive or negative answer. For polynomial Diophantine equations, suc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cybernetics and systems analysis Ročník 58; číslo 6; s. 914 - 916
Hlavní autoři: Vagis, A. A., Gupal, A. M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2022
Springer
Springer Nature B.V
Témata:
ISSN:1060-0396, 1573-8337
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An analysis of the undecidability of Diophantine equations showed that problems of recognition of the properties of the NP class are decidable, i.e., a non-deterministic algorithm or exhaustive search at the problem input gives a positive or negative answer. For polynomial Diophantine equations, such a non-deterministic algorithm does not exist. A simple version of Gödel’s theorem on the incompleteness of arithmetic follows from the undecidability of Diophantine equations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1060-0396
1573-8337
DOI:10.1007/s10559-023-00524-y