Decidability of NP-Complete Problems

An analysis of the undecidability of Diophantine equations showed that problems of recognition of the properties of the NP class are decidable, i.e., a non-deterministic algorithm or exhaustive search at the problem input gives a positive or negative answer. For polynomial Diophantine equations, suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis Jg. 58; H. 6; S. 914 - 916
Hauptverfasser: Vagis, A. A., Gupal, A. M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.11.2022
Springer
Springer Nature B.V
Schlagworte:
ISSN:1060-0396, 1573-8337
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An analysis of the undecidability of Diophantine equations showed that problems of recognition of the properties of the NP class are decidable, i.e., a non-deterministic algorithm or exhaustive search at the problem input gives a positive or negative answer. For polynomial Diophantine equations, such a non-deterministic algorithm does not exist. A simple version of Gödel’s theorem on the incompleteness of arithmetic follows from the undecidability of Diophantine equations.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1060-0396
1573-8337
DOI:10.1007/s10559-023-00524-y