Algorithms for maximal existential and universal width Algorithms for maximal existential and universal width

Maximal existential width and maximal universal width provide methods of quantifying the amount of nondeterminism and parallelism, respectively, present in computations of an alternating finite automaton (AFA). In this paper, we primarily seek to understand the complexity landscape of the problems p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Natural computing Ročník 24; číslo 3; s. 541 - 556
Hlavní autoři: Alajaji, John, Salomaa, Kai
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.09.2025
Springer Nature B.V
Témata:
ISSN:1567-7818, 1572-9796
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Maximal existential width and maximal universal width provide methods of quantifying the amount of nondeterminism and parallelism, respectively, present in computations of an alternating finite automaton (AFA). In this paper, we primarily seek to understand the complexity landscape of the problems pertaining to computing these widths. One such problem involves deciding whether the maximal universal width or maximal existential width of an AFA is bounded by a given integer k . For the case of a nondeterministic finite automaton (NFA), we give a polynomial time algorithm for computing maximal existential width. We also present a polynomial time algorithm for computing the existential width of a general AFA, under the assumption that the AFA’s universal width is bounded by a fixed integer ℓ . Finally, we reconsider the problems of computing existential and universal widths for AFAs over a unary language and demonstrate that both problems can be solved in polynomial time.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1567-7818
1572-9796
DOI:10.1007/s11047-025-10022-z