Tensor Interpolation

In this paper, we develop a new Lagrange tensor interpolation. We define tensorial jordanisation which gives us a practical method to calculate the coefficients of our tensor interpolating polynomial. Unlike what happens in the case of matrices where the product is simpler, there are multiple tensor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 100; číslo 4; s. 1599 - 1615
Hlavní autoři: Ouahidi, Salma, Sadaka, Rachid
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2025
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we develop a new Lagrange tensor interpolation. We define tensorial jordanisation which gives us a practical method to calculate the coefficients of our tensor interpolating polynomial. Unlike what happens in the case of matrices where the product is simpler, there are multiple tensorial products; we use the T -product and develop a new product which is most suitable for our work, we determine the coefficients of our interpolating polynomial as well as give the expression of the Langrange tensor interpolating polynomial. Furthermore, we will give examples of the effectiveness of this method in interpolating tensorial functions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-025-02070-4