Tensor Interpolation
In this paper, we develop a new Lagrange tensor interpolation. We define tensorial jordanisation which gives us a practical method to calculate the coefficients of our tensor interpolating polynomial. Unlike what happens in the case of matrices where the product is simpler, there are multiple tensor...
Gespeichert in:
| Veröffentlicht in: | Numerical algorithms Jg. 100; H. 4; S. 1599 - 1615 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.12.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1017-1398, 1572-9265 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we develop a new Lagrange tensor interpolation. We define tensorial jordanisation which gives us a practical method to calculate the coefficients of our tensor interpolating polynomial. Unlike what happens in the case of matrices where the product is simpler, there are multiple tensorial products; we use the
T
-product and develop a new product which is most suitable for our work, we determine the coefficients of our interpolating polynomial as well as give the expression of the Langrange tensor interpolating polynomial. Furthermore, we will give examples of the effectiveness of this method in interpolating tensorial functions. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-025-02070-4 |