Analysis of Model Parallelism for AI Applications on a 64-core RV64 Server CPU

Massive Data Parallel workloads, driven by inference on large ML models, are pushing hardware vendors to develop efficient and cost-effective multi-core server CPUs. The RISC-V architecture plays a prominent role due to its open, extensible, and energy-friendly ISA. Despite significant progress in r...

Full description

Saved in:
Bibliographic Details
Published in:International journal of parallel programming Vol. 53; no. 4; p. 27
Main Authors: Malenza, Giulio, Garcia, Adriano Marques, Birke, Robert, Benini, Luca, Aldinucci, Marco
Format: Journal Article
Language:English
Published: New York Springer US 01.08.2025
Springer Nature B.V
Subjects:
ISSN:0885-7458, 1573-7640
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Massive Data Parallel workloads, driven by inference on large ML models, are pushing hardware vendors to develop efficient and cost-effective multi-core server CPUs. The RISC-V architecture plays a prominent role due to its open, extensible, and energy-friendly ISA. Despite significant progress in recent years, finding efficient methods to run AI applications in parallel on new architectures to fully harness their maximum performance remains a challenge. In this study, we investigate the impact of model parallelism on the inference of machine learning models on the SOPHON SG2042 SoC, the first server-grade CPU based on the RV64 ISA, composed of 64 cores arranged in a grid of 16 groups of 4 cores. Specifically, we aim to enhance performance via better data locality stemming from splitting and assigning parts of the model to specific (groups of) cores handling dependencies via a pipeline execution. We orchestrate execution using FastFlow, a low-level programming framework designed for multithreaded streaming applications. By comparing the results against the standard multi-core inference approach based on data parallelism and analyzing the effects of different submodel-to-core mapping strategies, we aim to provide a comprehensive understanding of how the model parallel approach can maximize efficiency and utilization of hardware resources. In our experiments, using model parallelism improved up to 8.4 times the performance over the native PyTorch parallelism.
AbstractList Massive Data Parallel workloads, driven by inference on large ML models, are pushing hardware vendors to develop efficient and cost-effective multi-core server CPUs. The RISC-V architecture plays a prominent role due to its open, extensible, and energy-friendly ISA. Despite significant progress in recent years, finding efficient methods to run AI applications in parallel on new architectures to fully harness their maximum performance remains a challenge. In this study, we investigate the impact of model parallelism on the inference of machine learning models on the SOPHON SG2042 SoC, the first server-grade CPU based on the RV64 ISA, composed of 64 cores arranged in a grid of 16 groups of 4 cores. Specifically, we aim to enhance performance via better data locality stemming from splitting and assigning parts of the model to specific (groups of) cores handling dependencies via a pipeline execution. We orchestrate execution using FastFlow, a low-level programming framework designed for multithreaded streaming applications. By comparing the results against the standard multi-core inference approach based on data parallelism and analyzing the effects of different submodel-to-core mapping strategies, we aim to provide a comprehensive understanding of how the model parallel approach can maximize efficiency and utilization of hardware resources. In our experiments, using model parallelism improved up to 8.4 times the performance over the native PyTorch parallelism.
ArticleNumber 27
Author Malenza, Giulio
Aldinucci, Marco
Birke, Robert
Garcia, Adriano Marques
Benini, Luca
Author_xml – sequence: 1
  givenname: Giulio
  surname: Malenza
  fullname: Malenza, Giulio
  email: giulio.malenza@unito.it
  organization: Department of Computer Science, University of Turin
– sequence: 2
  givenname: Adriano Marques
  surname: Garcia
  fullname: Garcia, Adriano Marques
  email: adriano.marquesgarcia@unito.it
  organization: Department of Computer Science, University of Turin
– sequence: 3
  givenname: Robert
  surname: Birke
  fullname: Birke, Robert
  email: robert.birke@unito.it
  organization: Department of Computer Science, University of Turin
– sequence: 4
  givenname: Luca
  surname: Benini
  fullname: Benini, Luca
  organization: Department of Computer Science, University of Bologna
– sequence: 5
  givenname: Marco
  surname: Aldinucci
  fullname: Aldinucci, Marco
  organization: Department of Computer Science, University of Turin
BookMark eNp9kEtLAzEURoNUsK3-AVcB19GbZPKYZSk-ClWLWrchM8nIlOlkTFqh_96pI7hzdTfnfHDPBI3a0HqELilcUwB1kygoKQkwQQA0MCJP0JgKxYmSGYzQGLQWRGVCn6FJShsAyJXWY_Q0a21zSHXCocKPwfkGr2y0TeObOm1xFSKeLfCs65q6tLs6tD3YYotlRsoQPX55lxl-9fHLRzxfrc_RaWWb5C9-7xSt727f5g9k-Xy_mM-WpGSK7YizvBJ5roXW1BVW55mrcq-0gMyBKlhVOOpAcyi1tIJX_W_Kel70EuOly_kUXQ27XQyfe592ZhP2sX8lGc6YkJwpeqTYQJUxpBR9ZbpYb208GArm2M0M3Uzfzfx0M7KX-CClHm4_fPyb_sf6Biufb4c
Cites_doi 10.1007/978-1-4842-4398-5
10.1007/s11227-022-05024-y
10.21236/ADA605735
10.1109/CVPR.2016.90
10.1002/9781119332015.ch13
10.1145/3065386
10.1109/MM.2024.3373763
10.1145/2503210.2503219
10.1002/cpe.4175
10.1007/s11227-024-05934-z
10.1145/3587135.3592211
10.1109/CVPR.2009.5206848
10.1145/3203217.3205340
10.1145/3624062.3624234
10.1007/978-3-031-40843-4_31
10.1145/3528416.3530869
10.1109/72.279181
10.1016/0167-739X(92)90040-I
10.3390/info14020064
10.1109/ISCA45697.2020.00016
10.1007/s10766-022-00750-5
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10766-025-00802-6
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7640
ExternalDocumentID 10_1007_s10766_025_00802_6
GrantInformation_xml – fundername: DYMAN
  grantid: 101161930
– fundername: “FutureHPC & BigData” of the ICSC - Centro Nazionale di Ricerca in “High Performance Computing, Big Data and Quantum Computing
GroupedDBID -~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29J
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACSTC
ACUHS
ACZOJ
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
BKOMP
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EBLON
EBS
EIOEI
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
M2O
M4Y
MA-
MS~
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TAE
TN5
TSG
TSK
TSV
TUC
U2A
U5U
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
~EX
-Y2
.4S
2.D
28-
2P1
2VQ
5QI
8FE
8FG
8G5
AAOBN
AARHV
AAYJJ
AAYTO
AAYXX
ABDPE
ABFSI
ABQSL
ABULA
ABUWG
ACBXY
ADHKG
ADMLS
AEBTG
AEFIE
AEKMD
AFEXP
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AJBLW
ARCSS
AZQEC
B0M
BBWZM
BDATZ
BEZIV
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
E.L
EAD
EAS
EDO
EJD
EMK
EPL
FINBP
FRNLG
FSGXE
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
H13
H~9
I-F
K6V
K7-
KOW
M0C
N2Q
NDZJH
O9-
OVD
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
Q2X
RNI
RZC
RZE
RZK
S26
S28
SCJ
SCLPG
T16
TEORI
TUS
UZXMN
VFIZW
ZY4
~8M
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c272t-da3f59985881dba894df9e78504d07b2fbd1d0830c86a53f7667ae3bf5923cd93
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001520151400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7458
IngestDate Wed Nov 05 09:29:50 EST 2025
Sat Nov 29 07:35:22 EST 2025
Sat Jul 26 01:16:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords AI
RISC-V
Model parallelism
PyTorch
SOPHON SG2042
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-da3f59985881dba894df9e78504d07b2fbd1d0830c86a53f7667ae3bf5923cd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3225632719
PQPubID 48389
ParticipantIDs proquest_journals_3225632719
crossref_primary_10_1007_s10766_025_00802_6
springer_journals_10_1007_s10766_025_00802_6
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of parallel programming
PublicationTitleAbbrev Int J Parallel Prog
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 802_CR27
802_CR29
802_CR28
802_CR21
802_CR20
802_CR23
JKL Lee (802_CR37) 2023
802_CR22
802_CR25
802_CR6
802_CR7
802_CR4
FG Zee (802_CR32) 2015; 41
802_CR5
802_CR8
D del Rio Astorga (802_CR15) 2017; 29
AM Garcia (802_CR17) 2023; 79
802_CR16
802_CR38
802_CR18
802_CR39
N Tonci (802_CR9) 2022; 51
802_CR19
A Krizhevsky (802_CR24) 2017; 60
802_CR30
802_CR10
802_CR31
802_CR2
802_CR12
802_CR34
802_CR3
802_CR11
802_CR33
802_CR14
802_CR36
S Kalapothas (802_CR1) 2023
802_CR35
M Danelutto (802_CR13) 1992; 8
Y Bengio (802_CR26) 1994; 5
References_xml – ident: 802_CR16
  doi: 10.1007/978-1-4842-4398-5
– volume: 79
  start-page: 9206
  issue: 8
  year: 2023
  ident: 802_CR17
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-022-05024-y
– ident: 802_CR30
– ident: 802_CR6
  doi: 10.21236/ADA605735
– ident: 802_CR11
– ident: 802_CR7
  doi: 10.1109/CVPR.2016.90
– ident: 802_CR8
  doi: 10.1002/9781119332015.ch13
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 802_CR24
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: 802_CR4
  doi: 10.1109/MM.2024.3373763
– ident: 802_CR20
– ident: 802_CR3
– ident: 802_CR22
– ident: 802_CR19
  doi: 10.1145/2503210.2503219
– volume: 29
  start-page: 4175
  issue: 24
  year: 2017
  ident: 802_CR15
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.4175
– ident: 802_CR14
  doi: 10.1007/s11227-024-05934-z
– ident: 802_CR34
  doi: 10.1145/3587135.3592211
– ident: 802_CR33
– ident: 802_CR10
– ident: 802_CR31
– ident: 802_CR12
– ident: 802_CR28
  doi: 10.1109/CVPR.2009.5206848
– ident: 802_CR18
– ident: 802_CR39
– ident: 802_CR21
– ident: 802_CR36
  doi: 10.1145/3203217.3205340
– ident: 802_CR2
– ident: 802_CR23
– volume: 41
  start-page: 14
  issue: 3
  year: 2015
  ident: 802_CR32
  publication-title: ACM Trans. Math. Softw.
– ident: 802_CR38
  doi: 10.1145/3624062.3624234
– start-page: 419
  volume-title: High Performance Computing
  year: 2023
  ident: 802_CR37
  doi: 10.1007/978-3-031-40843-4_31
– ident: 802_CR27
– ident: 802_CR35
  doi: 10.1145/3528416.3530869
– ident: 802_CR25
– ident: 802_CR29
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 802_CR26
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.279181
– volume: 8
  start-page: 205
  issue: 1
  year: 1992
  ident: 802_CR13
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/0167-739X(92)90040-I
– year: 2023
  ident: 802_CR1
  publication-title: Information
  doi: 10.3390/info14020064
– ident: 802_CR5
  doi: 10.1109/ISCA45697.2020.00016
– volume: 51
  start-page: 1
  issue: 1
  year: 2022
  ident: 802_CR9
  publication-title: Int. J. Parallel Program.
  doi: 10.1007/s10766-022-00750-5
SSID ssj0009788
Score 2.3579643
Snippet Massive Data Parallel workloads, driven by inference on large ML models, are pushing hardware vendors to develop efficient and cost-effective multi-core server...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 27
SubjectTerms Artificial intelligence
Central processing units
Computer Science
Computer vision
CPUs
Design
Fashion models
Hardware
Inference
Machine learning
Neural networks
Open standards
Parallel processing
Pipelining (computers)
Processor Architectures
Servers
Software
Software Engineering/Programming and Operating Systems
Theory of Computation
Workloads
Title Analysis of Model Parallelism for AI Applications on a 64-core RV64 Server CPU
URI https://link.springer.com/article/10.1007/s10766-025-00802-6
https://www.proquest.com/docview/3225632719
Volume 53
WOSCitedRecordID wos001520151400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009788
  issn: 0885-7458
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2sJT47bGqqGCpqkKrbpEdx1KlkqKm8Pux00QpCAaYk5ycs-_us-7xAXArLPOXLm6QxxoEUe__kKLUIe6jl2DCRda6kmxCDIdyNlOjqimsqKvd65Rk6am3mt0EDwWzDJUNoojvgj0f7mQgbBg_T5tRu6Jkm_Tmw5CgTFatMj_L-BqOGoz5LS1aRptB-3_rPAKHFbqEvc1xOAY7WX4C2jVzA6wM-RQM61kkcOlgoENbwJFeBVqVxbx4hR7Iwt4T7G0lt-EyhxpyisLYSziecgqDm_FC-6PJGZgMHl76j6hiVkApFniNrCaO-YsWkx6uGi0VtU5lQrKI2kgY7IyNrQdnUSq5ZsT5HxI6I8Z_hElqFTkHrXyZZxcAxtgabFWqiUcK2iiZudjwNI40j6XMRAfc1QpO3jYDNJJmVHJQVeJVlZSqSngHdOs9SCpjKpLgczjBIlYdcF_rvHn8u7TLv71-BQ5wuW2hvK8LWuvVe3YN9tOP9bxY3ZSH7BPr18gB
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CnqxPrFadQ_edCGPfeVYisViDaW2pbewyWahUFtpqr_f3TQhVfSg5yTDZnZn5ltm5huAW66ouXSxGBus4WNi_B8OCNGYmejFKdeOUjofNsHDUEwmQb9oCsvKavcyJZl76o1mN85swSzFeYMoZtuwQ0zEsoz5g5dxRbXL82mTxnwo5oSKolXmZxlfw1GFMb-lRfNo06n_b52HcFCgS9RaH4cj2Ernx1AvJzegwpBPICy5SNBCIzsObYb6cmnHqsym2SsyQBa1uqi1kdxGizmSiBFsaS_RYMwIsm7GCG33R6cw6jwM24-4mKyAE497K6ykr6m5aFFh4GosRUCUDlIuqEOUw2NPx8pVBpw5iWCS-tr8EJepH5uPPD9RgX8Gtflinp4Dcj0VeypIpG-QgowDkWo3ZonrSOYKkfIG3JUKjt7WBBpRRZVsVRUZVUW5qiLWgGa5B1FhTFlkfQ7zPe4GDbgvdV49_l3axd9ev4G9x-FzL-p1w6dL2PfyLbSlfk2orZbv6RXsJh-raba8zg_cJ1W4yuU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrFadQ_edGke-8qxVItFCUFt6S1sslko1LS01d_vbprQKnoQz0mGzezOzDfszHwA11xRk3SxBBus4WNi_B8OCNGYmejFKdeOUrogm-BhKIbDIFrr4i-q3asryWVPg53SlC9aU6Vba41vnNniWYqLZlHMNmGL2EJ6m6-_DFZjd3nBPGlMiWJOqCjbZn6W8TU0rfDmtyvSIvJ06_9f8z7slagTtZfH5AA2svwQ6hWjAyoN_AjCakYJmmhkadLGKJIzS7cyHs3fkAG4qN1D7bVLbzTJkUSMYDsOEz0PGEHW_Rihnah_DP3u_WvnAZeMCzj1uLfASvqamgSMCgNjEykConSQcUEdohyeeDpRrjKgzUkFk9TX5oe4zPzEfOT5qQr8E6jlkzw7BeR6KvFUkErfIAiZBCLTbsJS15HMFSLjDbiplB1Pl4M14tUIZauq2KgqLlQVswY0q_2ISyObx9YXMd_jbtCA20r_q8e_Szv72-tXsBPddeOnXvh4DrtesYO2ArAJtcXsPbuA7fRjMZrPLouz9wnPBtPJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Model+Parallelism+for+AI+Applications+on+a+64-core+RV64+Server+CPU&rft.jtitle=International+journal+of+parallel+programming&rft.au=Malenza%2C+Giulio&rft.au=Garcia%2C+Adriano+Marques&rft.au=Birke%2C+Robert&rft.au=Benini%2C+Luca&rft.date=2025-08-01&rft.issn=0885-7458&rft.eissn=1573-7640&rft.volume=53&rft.issue=4&rft_id=info:doi/10.1007%2Fs10766-025-00802-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10766_025_00802_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7458&client=summon