Generic hardness of the Boolean satisfiability problem

It follows from the famous result of Cook about the NP-completeness of the Boolean satisfiability problem that there is no polynomial algorithm for this problem if . In this paper, we prove that the Boolean satisfiability problem remains computationally hard on polynomial strongly generic subsets of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Groups, complexity, cryptology Ročník 9; číslo 2; s. 151 - 154
Hlavní autor: Rybalov, Alexander
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin De Gruyter 01.11.2017
Walter de Gruyter GmbH
Témata:
ISSN:1867-1144, 1869-6104
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It follows from the famous result of Cook about the NP-completeness of the Boolean satisfiability problem that there is no polynomial algorithm for this problem if . In this paper, we prove that the Boolean satisfiability problem remains computationally hard on polynomial strongly generic subsets of formulas provided and . Boolean formulas are represented in the natural way by labeled binary trees.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1867-1144
1869-6104
DOI:10.1515/gcc-2017-0008