Primal–dual hybrid gradient algorithms for computing time-implicit Hamilton–Jacobi equations

Hamilton–Jacobi (HJ) partial differential equations (PDEs) have diverse applications spanning physics, optimal control, game theory, and imaging sciences. This research introduces a first-order optimization-based technique for HJ PDEs, which formulates the time-implicit update of HJ PDEs as saddle p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in the mathematical sciences Jg. 12; H. 2; S. 37
Hauptverfasser: Meng, Tingwei, Hao, Wenbo, Liu, Siting, Osher, Stanley J., Li, Wuchen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.06.2025
Springer Nature B.V
Schlagworte:
ISSN:2522-0144, 2197-9847
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hamilton–Jacobi (HJ) partial differential equations (PDEs) have diverse applications spanning physics, optimal control, game theory, and imaging sciences. This research introduces a first-order optimization-based technique for HJ PDEs, which formulates the time-implicit update of HJ PDEs as saddle point problems. We remark that the saddle point formulation for HJ equations is aligned with the primal–dual formulation of optimal transport and some mean-field games (MFGs). This connection enables us to extend MFG techniques and design numerical schemes for solving HJ PDEs. We employ the primal–dual hybrid gradient (PDHG) method to solve the saddle point problems, benefiting from the simple structures that enable fast computations in updates. Remarkably, the method caters to a broader range of Hamiltonians, encompassing non-smooth and spatiotemporally dependent cases. The approach’s effectiveness is verified through various numerical examples in both one-dimensional and two-dimensional examples, such as quadratic and L 1 Hamiltonians with spatial and time dependence.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2522-0144
2197-9847
DOI:10.1007/s40687-025-00519-5