Joint optimization of energy harvesting and data transmission in SWIPT-enabled hybrid precoding mmWave massive MIMO-NOMA systems

The integration of millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems with non-orthogonal multiple access (NOMA) significantly enhances spectral efficiency, a critical advancement for fifth-generation (5G) and beyond networks. Energy-constrained devices can harvest energy...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cluster computing Ročník 28; číslo 8; s. 532
Hlavní autoři: Ghamry, Walid K., Shukry, Suzan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.09.2025
Springer Nature B.V
Témata:
ISSN:1386-7857, 1573-7543
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The integration of millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems with non-orthogonal multiple access (NOMA) significantly enhances spectral efficiency, a critical advancement for fifth-generation (5G) and beyond networks. Energy-constrained devices can harvest energy while decoding information through integrating simultaneous wireless information and power transfer (SWIPT), significantly enhancing overall energy efficiency. However, this integration introduces a fundamental trade-off between energy harvesting and data transmission rates, presenting a critical optimization challenge. This paper explores the intricate trade-off between these two objectives in SWIPT-enabled mmWave massive MIMO-NOMA systems. A joint optimization framework is proposed for power allocation and power splitting (PS) control, aimed at maximizing both harvested energy and total transmission rate while ensuring that user equipment (UE) meets predefined energy and rate thresholds. To address the conflicting objectives, a novel performance metric, termed total achievable throughput ( ), is introduced, which combines the throughput transformed from harvested energy and data transmission rate. The resulting multi-objective optimization problem is reformulated into a single-objective optimization problem. To solve this optimization problem, an initial selecting cluster-head (SCH) and user grouping algorithm is proposed. This algorithm identifies a cluster head for each beam and organizes UEs into groups based on normalized channel correlation. An analog radio-frequency (RF) precoder is then designed for the selected user groups, followed by a digital baseband precoder to minimize inter-beam interference and maximize . The nonconvex optimization problem is then separated into two convex sub-problems, which are addressed iteratively. Both independent and equal PS scenarios are explored. Simulation results validate the proposed algorithms, demonstrating substantial improvements in energy efficiency and compared to conventional SWIPT-enabled mmWave MIMO-orthogonal multiple access (OMA) systems.
AbstractList The integration of millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems with non-orthogonal multiple access (NOMA) significantly enhances spectral efficiency, a critical advancement for fifth-generation (5G) and beyond networks. Energy-constrained devices can harvest energy while decoding information through integrating simultaneous wireless information and power transfer (SWIPT), significantly enhancing overall energy efficiency. However, this integration introduces a fundamental trade-off between energy harvesting and data transmission rates, presenting a critical optimization challenge. This paper explores the intricate trade-off between these two objectives in SWIPT-enabled mmWave massive MIMO-NOMA systems. A joint optimization framework is proposed for power allocation and power splitting (PS) control, aimed at maximizing both harvested energy and total transmission rate while ensuring that user equipment (UE) meets predefined energy and rate thresholds. To address the conflicting objectives, a novel performance metric, termed total achievable throughput (), is introduced, which combines the throughput transformed from harvested energy and data transmission rate. The resulting multi-objective optimization problem is reformulated into a single-objective optimization problem. To solve this optimization problem, an initial selecting cluster-head (SCH) and user grouping algorithm is proposed. This algorithm identifies a cluster head for each beam and organizes UEs into groups based on normalized channel correlation. An analog radio-frequency (RF) precoder is then designed for the selected user groups, followed by a digital baseband precoder to minimize inter-beam interference and maximize . The nonconvex optimization problem is then separated into two convex sub-problems, which are addressed iteratively. Both independent and equal PS scenarios are explored. Simulation results validate the proposed algorithms, demonstrating substantial improvements in energy efficiency and compared to conventional SWIPT-enabled mmWave MIMO-orthogonal multiple access (OMA) systems.
The integration of millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems with non-orthogonal multiple access (NOMA) significantly enhances spectral efficiency, a critical advancement for fifth-generation (5G) and beyond networks. Energy-constrained devices can harvest energy while decoding information through integrating simultaneous wireless information and power transfer (SWIPT), significantly enhancing overall energy efficiency. However, this integration introduces a fundamental trade-off between energy harvesting and data transmission rates, presenting a critical optimization challenge. This paper explores the intricate trade-off between these two objectives in SWIPT-enabled mmWave massive MIMO-NOMA systems. A joint optimization framework is proposed for power allocation and power splitting (PS) control, aimed at maximizing both harvested energy and total transmission rate while ensuring that user equipment (UE) meets predefined energy and rate thresholds. To address the conflicting objectives, a novel performance metric, termed total achievable throughput ( ), is introduced, which combines the throughput transformed from harvested energy and data transmission rate. The resulting multi-objective optimization problem is reformulated into a single-objective optimization problem. To solve this optimization problem, an initial selecting cluster-head (SCH) and user grouping algorithm is proposed. This algorithm identifies a cluster head for each beam and organizes UEs into groups based on normalized channel correlation. An analog radio-frequency (RF) precoder is then designed for the selected user groups, followed by a digital baseband precoder to minimize inter-beam interference and maximize . The nonconvex optimization problem is then separated into two convex sub-problems, which are addressed iteratively. Both independent and equal PS scenarios are explored. Simulation results validate the proposed algorithms, demonstrating substantial improvements in energy efficiency and compared to conventional SWIPT-enabled mmWave MIMO-orthogonal multiple access (OMA) systems.
ArticleNumber 532
Author Shukry, Suzan
Ghamry, Walid K.
Author_xml – sequence: 1
  givenname: Walid K.
  surname: Ghamry
  fullname: Ghamry, Walid K.
  email: wkamal@bu.edu.sa
  organization: Computer Engineering, Faculty of Engineering, Al-Baha University, Information Systems Engineering Department, National Research Center
– sequence: 2
  givenname: Suzan
  surname: Shukry
  fullname: Shukry, Suzan
  organization: Higher Technological Institute
BookMark eNp9kMtKAzEUhoMoeH0BVwHX0Vwmk86yiJeKtYKVLkNm5kyNdJKaTAvjykc3dQR3rv4D-b8TzneM9p13gNA5o5eMUnUVGZWjnFAuCZUy40TsoSMmlSBKZmI_zSI9q5FUh-g4xndKaaF4cYS-Hrx1Hfbrzrb203TWO-wbDA7CssdvJmwhdtYtsXE1rk1ncBeMi62NcVe1Dr8sJs9zAs6UK6jxW18GW-N1gMrXO65tF2YLuDUJSDmdTGfkaTYd49jHDtp4ig4as4pw9psn6PX2Zn59Tx5nd5Pr8SOpuOIdKWlRM2nKEc0zyFitjKhorUSZG-AF5DmIRkqQTDYNlWW6tslzkykhyqaoUp6gi2HvOviPTTpKv_tNcOlLLXiW9HHGstTiQ6sKPsYAjV4H25rQa0b1zrQeTOtkWv-Y1iJBYoBiKrslhL_V_1DfCfuEMg
Cites_doi 10.3390/electronics9010032
10.1109/ACCESS.2020.3013305
10.1109/MCOM.2014.6957150
10.1109/ACCESS.2017.2671903
10.3390/telecom5030042
10.1109/ACCESS.2022.3155485
10.3390/s23125516
10.1109/JSEN.2021.3076517
10.1109/TWC.2023.3326518
10.1109/ACCESS.2021.3060836
10.1109/TWC.2014.011714.130846
10.1109/TVT.2022.3153323
10.1017/CBO9780511804441
10.1109/TVT.2021.3057648
10.1109/LWC.2020.3037750
10.1002/ett.4740
10.1109/TVT.2018.2819682
10.1109/ISIT.2008.4595260
10.1109/TVT.2025.3534021
10.1109/ICC.2017.7997065
10.1007/s11277-023-10845-y
10.1109/ACCESS.2023.3263548
10.1016/j.phycom.2021.101469
10.1109/TWC.2017.2671869
10.1109/TVT.2023.3293988
10.1109/MSP.2014.2330661
10.1109/ACCESS.2023.3347041
10.1109/ACCESS.2018.2827022
10.1109/JSAC.2016.2549418
10.1109/TCOMM.2024.3511704
10.1109/MWC.2015.7306370
10.1109/LCOMM.2018.2803805
10.1109/ACCESS.2021.3071992
10.1109/TWC.2013.031813.120224
10.1109/TSP.2014.2370947
10.1109/LWC.2022.3150217
10.1109/TCOMM.2018.2883079
10.1109/OJCOMS.2020.3010270
10.1109/TCOMM.2019.2906589
10.1109/JSEN.2019.2914796
10.1109/ACCESS.2017.2673248
10.1109/ACCESS.2020.2984204
10.1109/ACCESS.2018.2850363
10.1109/TWC.2019.2932070
10.1109/TVT.2024.3483952
10.1109/TVT.2017.2674976
10.1109/JSTSP.2021.3089026
10.1109/LWC.2016.2521638
10.1109/JSAC.2017.2725878
10.1109/49.995521
10.1109/LCOMM.2016.2532334
10.1109/JSTSP.2016.2523924
10.1109/TWC.2015.2474857
10.1109/LWC.2024.3400974
10.1016/j.phycom.2021.101324
10.1109/TWC.2015.2455980
10.1109/TIT.2010.2090255
10.1109/TSP.2017.2725223
10.1109/MCOM.2015.7263349
10.1109/TWC.2018.2874646
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10586-025-05542-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
ExternalDocumentID 10_1007_s10586_025_05542_3
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29B
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFDZB
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
AAIAL
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEKMD
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AHSBF
AJBLW
ARAPS
BDATZ
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
EJD
FINBP
FSGXE
H13
HCIFZ
HZ~
IHE
K7-
N2Q
O9-
OVD
PHGZM
PHGZT
PQGLB
RNI
RZC
RZE
RZK
TEORI
JQ2
ID FETCH-LOGICAL-c272t-b09d15ab8064e41d7a3c0d73b6ae29e66e3f55e515ff05b386f66a4733bf9c473
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001553568100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-7857
IngestDate Wed Nov 26 14:51:35 EST 2025
Sat Nov 29 07:30:35 EST 2025
Tue Sep 16 01:11:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Massive MIMO-NOMA
Hybrid precoding
Power splitting
SWIPT
Power allocation
MmWave
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-b09d15ab8064e41d7a3c0d73b6ae29e66e3f55e515ff05b386f66a4733bf9c473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3241052114
PQPubID 2043865
ParticipantIDs proquest_journals_3241052114
crossref_primary_10_1007_s10586_025_05542_3
springer_journals_10_1007_s10586_025_05542_3
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References RW Heath (5542_CR9) 2016; 10
X Zhu (5542_CR60) 2016; 20
X Gao (5542_CR12) 2016; 34
WM Audu (5542_CR38) 2023; 11
S Sumathi (5542_CR19) 2023
J Tang (5542_CR61) 2022; 9
H Xu (5542_CR43) 2002; 20
R Zhang (5542_CR21) 2023; 72
S Li (5542_CR52) 2021; 46
H Al-Obiedollah (5542_CR31) 2021; 9
AN Uwaechia (5542_CR41) 2020; 8
C Li (5542_CR37) 2023; 158
SN Sur (5542_CR42) 2024; 5
S Boyd (5542_CR62) 2004
L Zhu (5542_CR6) 2019; 67
N Zhao (5542_CR8) 2019; 67
R Pal (5542_CR59) 2018; 22
N Ye (5542_CR3) 2021; 70
R Zhang (5542_CR25) 2013; 12
J Singh (5542_CR58) 2024
A Alkhateeb (5542_CR14) 2015; 14
MRG Aghdam (5542_CR5) 2022; 11
V Khodamoradi (5542_CR29) 2022; 71
Y Liu (5542_CR46) 2023; 23
G Dong (5542_CR28) 2018; 6
Y-Y Lee (5542_CR45) 2015; 63
B Wang (5542_CR16) 2017; 35
Y Kong (5542_CR35) 2024; 13
Z Yinhao (5542_CR18) 2022; 17
S Solaiman (5542_CR2) 2021; 9
5542_CR23
W Lu (5542_CR48) 2017; 5
B Shi (5542_CR22) 2024; 23
E Bjornson (5542_CR56) 2014; 31
J Singh (5542_CR57) 2025
S Zargari (5542_CR27) 2021; 10
Z Xiang (5542_CR50) 2018; 67
V Raghavan (5542_CR44) 2011; 57
W Lu (5542_CR51) 2018; 6
YN Samir (5542_CR20) 2023; 133
I Krikidis (5542_CR24) 2014; 52
L Zhu (5542_CR17) 2019; 18
OE Ayach (5542_CR11) 2014; 13
G Kwon (5542_CR36) 2021; 15
MZ Chowdhury (5542_CR1) 2020; 1
S Park (5542_CR15) 2017; 16
L Dai (5542_CR55) 2015; 53
B Xu (5542_CR30) 2016; 5
S Wang (5542_CR4) 2021; 49
5542_CR13
L Chen (5542_CR47) 2021; 21
Z Zong (5542_CR32) 2016; 15
A Rauniyar (5542_CR26) 2019; 19
S Li (5542_CR10) 2020; 9
AN Uwaechia (5542_CR7) 2020; 8
H Zhang (5542_CR33) 2017; 66
Y Li (5542_CR34) 2025; 74
SH Kim (5542_CR39) 2024; 12
SKTOS Jang (5542_CR49) 2018; 17
Z Chen (5542_CR63) 2017; 65
Z Ding (5542_CR53) 2017; 5
A Jawarneh (5542_CR40) 2022; 10
S Misra (5542_CR54) 2015; 22
References_xml – volume: 9
  start-page: 32
  year: 2020
  ident: 5542_CR10
  publication-title: Electronics
  doi: 10.3390/electronics9010032
– volume: 8
  start-page: 139994
  year: 2020
  ident: 5542_CR41
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3013305
– volume: 52
  start-page: 104
  issue: 11
  year: 2014
  ident: 5542_CR24
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2014.6957150
– volume: 5
  start-page: 2763
  year: 2017
  ident: 5542_CR48
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2671903
– volume: 5
  start-page: 823
  issue: 3
  year: 2024
  ident: 5542_CR42
  publication-title: Telecom
  doi: 10.3390/telecom5030042
– volume: 17
  start-page: 6466
  year: 2022
  ident: 5542_CR18
  publication-title: No.
– volume: 10
  start-page: 28868
  year: 2022
  ident: 5542_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3155485
– volume: 23
  start-page: 5516
  issue: 12
  year: 2023
  ident: 5542_CR46
  publication-title: Sensors
  doi: 10.3390/s23125516
– volume: 21
  start-page: 16381
  issue: 14
  year: 2021
  ident: 5542_CR47
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3076517
– volume: 23
  start-page: 5488
  issue: 6
  year: 2024
  ident: 5542_CR22
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2023.3326518
– volume: 9
  start-page: 33018
  year: 2021
  ident: 5542_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3060836
– volume: 13
  start-page: 1499
  issue: 3
  year: 2014
  ident: 5542_CR11
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2014.011714.130846
– volume: 71
  start-page: 5111
  issue: 5
  year: 2022
  ident: 5542_CR29
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3153323
– volume-title: Convex Optimization
  year: 2004
  ident: 5542_CR62
  doi: 10.1017/CBO9780511804441
– volume: 70
  start-page: 2337
  year: 2021
  ident: 5542_CR3
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3057648
– volume: 10
  start-page: 557
  issue: 3
  year: 2021
  ident: 5542_CR27
  publication-title: IEEE Wireless Commun. Lett.
  doi: 10.1109/LWC.2020.3037750
– year: 2023
  ident: 5542_CR19
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.4740
– volume: 67
  start-page: 4910
  issue: 6
  year: 2018
  ident: 5542_CR50
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2819682
– ident: 5542_CR23
  doi: 10.1109/ISIT.2008.4595260
– year: 2025
  ident: 5542_CR57
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2025.3534021
– ident: 5542_CR13
  doi: 10.1109/ICC.2017.7997065
– volume: 133
  start-page: 1769
  issue: 3
  year: 2023
  ident: 5542_CR20
  publication-title: Wireless Pers. Commun.
  doi: 10.1007/s11277-023-10845-y
– volume: 11
  start-page: 33741
  year: 2023
  ident: 5542_CR38
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3263548
– volume: 49
  start-page: 101469
  year: 2021
  ident: 5542_CR4
  publication-title: Phys. Commun.
  doi: 10.1016/j.phycom.2021.101469
– volume: 16
  start-page: 2907
  year: 2017
  ident: 5542_CR15
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2017.2671869
– volume: 72
  start-page: 15967
  issue: 12
  year: 2023
  ident: 5542_CR21
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2023.3293988
– volume: 31
  start-page: 14
  issue: 6
  year: 2014
  ident: 5542_CR56
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2014.2330661
– volume: 12
  start-page: 5617
  year: 2024
  ident: 5542_CR39
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3347041
– volume: 6
  start-page: 22480
  year: 2018
  ident: 5542_CR51
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2827022
– volume: 34
  start-page: 998
  issue: 4
  year: 2016
  ident: 5542_CR12
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2016.2549418
– year: 2024
  ident: 5542_CR58
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2024.3511704
– volume: 22
  start-page: 6
  issue: 5
  year: 2015
  ident: 5542_CR54
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2015.7306370
– volume: 22
  start-page: 852
  issue: 4
  year: 2018
  ident: 5542_CR59
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2018.2803805
– volume: 9
  start-page: 57726
  year: 2021
  ident: 5542_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071992
– volume: 12
  start-page: 1989
  issue: 5
  year: 2013
  ident: 5542_CR25
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2013.031813.120224
– volume: 63
  start-page: 305
  issue: 2
  year: 2015
  ident: 5542_CR45
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2370947
– volume: 11
  start-page: 938
  year: 2022
  ident: 5542_CR5
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LWC.2022.3150217
– volume: 67
  start-page: 2294
  year: 2019
  ident: 5542_CR8
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2018.2883079
– volume: 1
  start-page: 957
  year: 2020
  ident: 5542_CR1
  publication-title: IEEE Open J. Commun. Soc.
  doi: 10.1109/OJCOMS.2020.3010270
– volume: 67
  start-page: 5114
  issue: 7
  year: 2019
  ident: 5542_CR6
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2019.2906589
– volume: 19
  start-page: 7668
  issue: 17
  year: 2019
  ident: 5542_CR26
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2914796
– volume: 5
  start-page: 7667
  year: 2017
  ident: 5542_CR53
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2673248
– volume: 8
  start-page: 62367
  year: 2020
  ident: 5542_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2984204
– volume: 6
  start-page: 36810
  year: 2018
  ident: 5542_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2850363
– volume: 18
  start-page: 5065
  issue: 11
  year: 2019
  ident: 5542_CR17
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2019.2932070
– volume: 74
  start-page: 4669
  issue: 3
  year: 2025
  ident: 5542_CR34
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2024.3483952
– volume: 66
  start-page: 7123
  issue: 8
  year: 2017
  ident: 5542_CR33
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2674976
– volume: 15
  start-page: 1211
  issue: 5
  year: 2021
  ident: 5542_CR36
  publication-title: IEEE J. Sel. Topics Signal Process.
  doi: 10.1109/JSTSP.2021.3089026
– volume: 5
  start-page: 220
  issue: 2
  year: 2016
  ident: 5542_CR30
  publication-title: IEEE Wireless Commun. Lett.
  doi: 10.1109/LWC.2016.2521638
– volume: 158
  start-page: 154449
  year: 2023
  ident: 5542_CR37
  publication-title: AEU-Int. J. Electron. C.
– volume: 35
  start-page: 2370
  issue: 10
  year: 2017
  ident: 5542_CR16
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2017.2725878
– volume: 20
  start-page: 620
  issue: 3
  year: 2002
  ident: 5542_CR43
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/49.995521
– volume: 20
  start-page: 776
  issue: 4
  year: 2016
  ident: 5542_CR60
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2016.2532334
– volume: 10
  start-page: 436
  issue: 3
  year: 2016
  ident: 5542_CR9
  publication-title: IEEE J. Sel. Topics Signal Process.
  doi: 10.1109/JSTSP.2016.2523924
– volume: 15
  start-page: 430
  issue: 1
  year: 2016
  ident: 5542_CR32
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2015.2474857
– volume: 13
  start-page: 2075
  issue: 8
  year: 2024
  ident: 5542_CR35
  publication-title: IEEE Wireless Commun. Lett.
  doi: 10.1109/LWC.2024.3400974
– volume: 46
  start-page: 101324
  year: 2021
  ident: 5542_CR52
  publication-title: Physical Commun
  doi: 10.1016/j.phycom.2021.101324
– volume: 14
  start-page: 6481
  issue: 11
  year: 2015
  ident: 5542_CR14
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2015.2455980
– volume: 57
  start-page: 345
  issue: 1
  year: 2011
  ident: 5542_CR44
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2010.2090255
– volume: 65
  start-page: 5191
  issue: 19
  year: 2017
  ident: 5542_CR63
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2725223
– volume: 53
  start-page: 74
  issue: 9
  year: 2015
  ident: 5542_CR55
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2015.7263349
– volume: 9
  start-page: 16962
  issue: 18
  year: 2022
  ident: 5542_CR61
  publication-title: IEEE Int. Things J.
– volume: 17
  start-page: 8180
  issue: 12
  year: 2018
  ident: 5542_CR49
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2018.2874646
SSID ssj0009729
Score 2.36034
Snippet The integration of millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems with non-orthogonal multiple access (NOMA) significantly...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 532
SubjectTerms Algorithms
Antennas
Clusters
Communication
Computer Communication Networks
Computer Science
Data transmission
Decoding
Energy consumption
Energy efficiency
Energy harvesting
Millimeter waves
MIMO communication
Multiple objective analysis
Nonorthogonal multiple access
Operating Systems
Optimization
Power management
Power transfer
Processor Architectures
Tradeoffs
Transmission rate (communications)
User groups
Title Joint optimization of energy harvesting and data transmission in SWIPT-enabled hybrid precoding mmWave massive MIMO-NOMA systems
URI https://link.springer.com/article/10.1007/s10586-025-05542-3
https://www.proquest.com/docview/3241052114
Volume 28
WOSCitedRecordID wos001553568100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: RSV
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DSyUpygv3cAGlprEjpOxQlSA6EOU1xbZjU07NEFtQGLjp3N2ExUQDDBliG1Fd-e7z_F9d4QcmwZHHK4l1WnEKWNcUSW4oNIzOg6Fr5jrn3J_LTqd6PEx7pWksGmV7V5dSTpP_YnsxiObMMtpA2OgT4NFsozhLrING2769_NSu8L1JvMCHC0iLkqqzM9rfA1Hc4z57VrURZtW7X_fuU7WSnQJzZk5bJAFnW2SWtW5AcqNvEXer_JRVkCO_mJcEjEhN6AdERCGcuKKb2RPILMUbBIpFDamoU3Yn2swyqD_cNm7pdoxr1IYvlniFzzb47UNhjAeP8hXDWOE5uhOoX3Z7tJOt92EWeXo6Ta5a53fnl3QshcDHfjCL6hqxKnHpYoQwmjmpUIGg0YqAhVK7cc6DHVgONeIjgyqX6HsTRhKJoJAmXiAzx2ylOWZ3iXAFJMScUaU4ukyMloyEzNteIrTOALQOjmpVJI8z0puJPPiyla4CQo3ccJNgjo5qLSWlNtvmiBK9Cwr2WN1clppaf7699X2_jZ8n6z6TtE25-yALBWTF31IVgavxWg6OXJm-QGQq91C
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6NDgleYOOHKIPtHvbGLDWJHSeP1TREt7ag0QFvkd3YtA9NURuQeONP5-wm6kDwAE95iG1Fd-e7z_F9dwDfbUsQDjeKmTwRjHOhmZZCMhVYk8Yy1Nz3T7noyn4_ubpKzypS2LzOdq-vJL2n_o_sJhKXMCtYi2JgyKIV-MgpYrmK-X_PL5aldqXvTRZENFomQlZUmZfXeBqOlhjz2bWojzbHm-_7zk-wUaFLbC_M4TN8MMUWbNadG7DayNvw8Hs6Lkqckr-YVERMnFo0ngiIIzXzxTeKa1RFji6JFEsX08gm3M81HBd4ftk5GzDjmVc5ju4d8Qtv3PHaBUOcTC7VncEJQXNyp9jr9E5Z_7TXxkXl6PkO_Dv-Nfh5wqpeDGwYyrBkupXmgVA6IQhjeJBLFQ1buYx0rEyYmjg2kRXCEDqypH5NsrdxrLiMIm3TIT13oVFMC7MHyDVXinBGktPpMrFGcZtyY0VO0wQB0CYc1SrJbhYlN7JlcWUn3IyEm3nhZlETDmqtZdX2m2eEEgPHSg54E37UWlq-fn21_bcN_wZrJ4NeN-t2-n--wHrole7yzw6gUc5uzSGsDu_K8Xz21ZvoI_hg4CY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9swDCW2bhh6add1Q9N1Kw-7bUJjW7LsY7E2WLYmDdDPmyFF0pJDnCBxC_TWn15KsZGuWA_DTj5YEgySEh8tPhLgi2sLwuFWMWsywTgXmmkpJFORs3kqY81D_5TLE9nvZ9fX-eARiz9kuzdXkktOg6_SVFYHM-MOHhHfROaTZwVrkz-MWfISXnGfSO_j9bPLVdldGfqURQmNlpmQNW3m72v86ZpWePPJFWnwPJ3N___mt7BRo048XJrJFryw5TvYbDo6YL3Bt-H-53RcVjilc2RSEzRx6tAGgiCO1DwU5Sh_oyoN-uRSrLyvI1vxP91wXOLZVXdwzmxgZBkc3XlCGM582O2dJE4mV-rW4oQgOx2z2Ov2Tln_tHeIy4rSi_dw0Tk-__6D1T0a2DCWccV0OzeRUDojaGN5ZKRKhm0jE50qG-c2TW3ihLCEmhyZhSY9uDRVXCaJdvmQnh9grZyWdgeQa64U4Y_MUNSZOau4y7l1wtA0QcC0BV8b9RSzZSmOYlV02Qu3IOEWQbhF0oK9RoNFvS0XBaHHyLOVI96Cb43GVq-fX23334bvw5vBUac46fZ_fYT1OOjcp6XtwVo1v7Gf4PXwthov5p-DtT4AO7_pCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+optimization+of+energy+harvesting+and+data+transmission+in+SWIPT-enabled+hybrid+precoding+mmWave+massive+MIMO-NOMA+systems&rft.jtitle=Cluster+computing&rft.au=Ghamry%2C+Walid+K.&rft.au=Shukry%2C+Suzan&rft.date=2025-09-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=8&rft_id=info:doi/10.1007%2Fs10586-025-05542-3&rft.externalDocID=10_1007_s10586_025_05542_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon