Linearization and Lemma of Newton for operator functions

We study the action of the nonlinear mapping G [ z ] between real or complex Banach spaces in the vicinity of a given curve with respect to possible linearization, emerging patterns of level sets, as well as existing solutions of $$G[z]=0$$ G [ z ] = 0 . The results represent local generalizations o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in operator theory Jg. 10; H. 4; S. 85
1. Verfasser: Stiefenhofer, Matthias
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel Springer Nature B.V 01.10.2025
Schlagworte:
ISSN:2662-2009, 2538-225X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We study the action of the nonlinear mapping G [ z ] between real or complex Banach spaces in the vicinity of a given curve with respect to possible linearization, emerging patterns of level sets, as well as existing solutions of $$G[z]=0$$ G [ z ] = 0 . The results represent local generalizations of the standard implicit or inverse function theorem and of Newton’s Lemma, considering the order of approximation needed to obtain solutions of $$G[z]=0$$ G [ z ] = 0 . The main technical tool is given by Jordan chains with increasing rank, used to obtain an Ansatz, appropriate for transformation of the nonlinear system to its linear part. The family of linear mappings is restricted to the case of an isolated singularity. Geometrically, the Jordan chains define a generalized cone around the given curve, composed of approximate solutions of order 2 k with k denoting the maximal rank of Jordan chains needed to ensure k -surjectivity of the linear family. Along these lines, the zero set of G [ z ] in the cone is calculated immediately, agreeing up to the order of $$k-1$$ k - 1 with the given approximation. Hence, the results may also be interpreted as a version of Tougeron’s implicit function theorem in Banach spaces, essentially restricted to the arc case of a single variable. Finally, by considering a left shift of the Jordan chains, the Ansatz can be modified in a systematic way to obtain a sequence of refined versions of linearization theorems and Newton Lemmas in Banach spaces.
AbstractList We study the action of the nonlinear mapping G[z] between real or complex Banach spaces in the vicinity of a given curve with respect to possible linearization, emerging patterns of level sets, as well as existing solutions of G[z]=0. The results represent local generalizations of the standard implicit or inverse function theorem and of Newton’s Lemma, considering the order of approximation needed to obtain solutions of G[z]=0. The main technical tool is given by Jordan chains with increasing rank, used to obtain an Ansatz, appropriate for transformation of the nonlinear system to its linear part. The family of linear mappings is restricted to the case of an isolated singularity. Geometrically, the Jordan chains define a generalized cone around the given curve, composed of approximate solutions of order 2k with k denoting the maximal rank of Jordan chains needed to ensure k-surjectivity of the linear family. Along these lines, the zero set of G[z] in the cone is calculated immediately, agreeing up to the order of k-1 with the given approximation. Hence, the results may also be interpreted as a version of Tougeron’s implicit function theorem in Banach spaces, essentially restricted to the arc case of a single variable. Finally, by considering a left shift of the Jordan chains, the Ansatz can be modified in a systematic way to obtain a sequence of refined versions of linearization theorems and Newton Lemmas in Banach spaces.
We study the action of the nonlinear mapping G [ z ] between real or complex Banach spaces in the vicinity of a given curve with respect to possible linearization, emerging patterns of level sets, as well as existing solutions of $$G[z]=0$$ G [ z ] = 0 . The results represent local generalizations of the standard implicit or inverse function theorem and of Newton’s Lemma, considering the order of approximation needed to obtain solutions of $$G[z]=0$$ G [ z ] = 0 . The main technical tool is given by Jordan chains with increasing rank, used to obtain an Ansatz, appropriate for transformation of the nonlinear system to its linear part. The family of linear mappings is restricted to the case of an isolated singularity. Geometrically, the Jordan chains define a generalized cone around the given curve, composed of approximate solutions of order 2 k with k denoting the maximal rank of Jordan chains needed to ensure k -surjectivity of the linear family. Along these lines, the zero set of G [ z ] in the cone is calculated immediately, agreeing up to the order of $$k-1$$ k - 1 with the given approximation. Hence, the results may also be interpreted as a version of Tougeron’s implicit function theorem in Banach spaces, essentially restricted to the arc case of a single variable. Finally, by considering a left shift of the Jordan chains, the Ansatz can be modified in a systematic way to obtain a sequence of refined versions of linearization theorems and Newton Lemmas in Banach spaces.
ArticleNumber 85
Author Stiefenhofer, Matthias
Author_xml – sequence: 1
  givenname: Matthias
  orcidid: 0009-0001-4041-8351
  surname: Stiefenhofer
  fullname: Stiefenhofer, Matthias
BookMark eNotkE1LxDAURYOM4DjOH3BVcB19eUnadCmDX1B0o-AuvLYJdHCSMWkR_fV2HFfv8jjcC-ecLUIMjrFLAdcCoLrJSoIsOaDmAKpCbk7YErU0HFG_L-ZclsgRoD5j65y3AIAg6xJhyUwzBEdp-KFxiKGg0BeN2-2oiL54dl_j_PMxFXHvEo1z8FPoDmS-YKeePrJb_98Ve7u_e9088ubl4Wlz2_AOKxw5tTXJngy2XvTUGkOqJETftoKqXtVV31Wu1051NQjSWredqUqnySitSJBcsatj7z7Fz8nl0W7jlMI8aSVqbaRAWc8UHqkuxZyT83afhh2lbyvAHiTZoyQ7S7J_kqyRvx-MW6s
Cites_doi 10.1016/1385-7258(74)90039-0
10.1016/0022-0396(88)90136-2
10.1201/9781420035506
10.1090/S0002-9939-97-04112-9
10.5427/jsing.2018.17g
10.1007/978-3-0346-0126-9
10.1007/978-1-4612-5154-5
10.1090/bull/1579
10.1353/ajm.0.0134
10.1016/j.indag.2012.05.001
10.1007/BF02684802
10.1007/s00020-004-1311-y
10.1016/j.laa.2025.07.013
10.1016/j.jalgebra.2009.07.038
ContentType Journal Article
Copyright The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
DOI 10.1007/s43036-025-00472-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2538-225X
ExternalDocumentID 10_1007_s43036_025_00472_8
GroupedDBID 0R~
406
8UJ
AACDK
AAHNG
AAJBT
AAOJF
AASML
AATNV
AAUYE
AAYXX
ABAKF
ABBRH
ABDBE
ABECU
ABFSG
ABJNI
ABMQK
ABRTQ
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACSTC
ACZOJ
ADKNI
ADYFF
AEFQL
AEMSY
AEZWR
AFBBN
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AFQWF
AGMZJ
AGQEE
AHPBZ
AHWEU
AIGIU
AILAN
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ATHPR
AYFIA
AZQEC
BENPR
BGNMA
CCPQU
CITATION
DPUIP
DWQXO
EBLON
EBS
EJD
FIGPU
FNLPD
FRP
GNUQQ
GUQSH
HCIFZ
IKXTQ
IWAJR
JZLTJ
KOV
LLZTM
M2O
M2P
M4Y
NPVJJ
NQJWS
NU0
PHGZM
PHGZT
PT4
PUASD
RBF
RBV
ROL
RPE
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AESKC
ID FETCH-LOGICAL-c272t-ab9a3da82bf1dab88a46a22fbb1a7d497dc7ed5e4c901a555bc876e5a8454a1a3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001562569500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2662-2009
IngestDate Sun Nov 02 05:49:47 EST 2025
Sat Nov 29 07:02:15 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-ab9a3da82bf1dab88a46a22fbb1a7d497dc7ed5e4c901a555bc876e5a8454a1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-4041-8351
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s43036-025-00472-8.pdf
PQID 3255831239
PQPubID 7433678
ParticipantIDs proquest_journals_3255831239
crossref_primary_10_1007_s43036_025_00472_8
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Advances in operator theory
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References 472_CR13
472_CR14
472_CR15
472_CR16
472_CR17
W Kaballo (472_CR10) 2012; 23
H Hauser (472_CR9) 2017; 54
RF Coleman (472_CR4) 2009; 322
J Esquinas (472_CR5) 1988; 75
J López-Gómez (472_CR12) 2001
B Fisher (472_CR6) 1997; 125
472_CR7
H Bart (472_CR2) 1974; 77
472_CR1
M Stiefenhofer (472_CR18) 2025; 725
MJ Greenberg (472_CR8) 1966; 31
472_CR3
472_CR11
References_xml – volume: 77
  start-page: 217
  issue: 3
  year: 1974
  ident: 472_CR2
  publication-title: Indag. Math.
  doi: 10.1016/1385-7258(74)90039-0
– ident: 472_CR16
– ident: 472_CR11
– ident: 472_CR17
– volume: 75
  start-page: 206
  year: 1988
  ident: 472_CR5
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(88)90136-2
– ident: 472_CR15
– volume-title: Spectral Theory and Nonlinear Functional Analysis, Research Notes in Mathematics
  year: 2001
  ident: 472_CR12
  doi: 10.1201/9781420035506
– volume: 125
  start-page: 3185
  issue: 11
  year: 1997
  ident: 472_CR6
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-97-04112-9
– ident: 472_CR14
  doi: 10.5427/jsing.2018.17g
– ident: 472_CR7
  doi: 10.1007/978-3-0346-0126-9
– ident: 472_CR1
  doi: 10.1007/978-1-4612-5154-5
– volume: 54
  start-page: 595
  year: 2017
  ident: 472_CR9
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/bull/1579
– ident: 472_CR3
  doi: 10.1353/ajm.0.0134
– volume: 23
  start-page: 970
  year: 2012
  ident: 472_CR10
  publication-title: Indag. Math.
  doi: 10.1016/j.indag.2012.05.001
– volume: 31
  start-page: 59
  year: 1966
  ident: 472_CR8
  publication-title: Publ. Math. Inst. Hautes Études Sci.
  doi: 10.1007/BF02684802
– ident: 472_CR13
  doi: 10.1007/s00020-004-1311-y
– volume: 725
  start-page: 319
  year: 2025
  ident: 472_CR18
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2025.07.013
– volume: 322
  start-page: 3427
  year: 2009
  ident: 472_CR4
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2009.07.038
SSID ssj0002039620
Score 2.3047187
Snippet We study the action of the nonlinear mapping G [ z ] between real or complex Banach spaces in the vicinity of a given curve with respect to possible...
We study the action of the nonlinear mapping G[z] between real or complex Banach spaces in the vicinity of a given curve with respect to possible...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 85
SubjectTerms Approximation
Linear equations
Title Linearization and Lemma of Newton for operator functions
URI https://www.proquest.com/docview/3255831239
Volume 10
WOSCitedRecordID wos001562569500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2538-225X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002039620
  issn: 2662-2009
  databaseCode: RSV
  dateStart: 20200201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUqxAAD34hCQR7YwKJx7MQeEaJigAqJD3WLzvZFYmhaNYXfz8VNK1WCoUNWK3o-33v-uHeMXaekkkvwRuiASqgMtQBMrAiR7RNUCGVsNpEPh2Y0sq8ddvvvDf5drZosK5q2q9HaUDSVvUm2KNZ6-1wdqMh-arNow0icI5vZt22RzN-jrBPReh6O5DLY3-y3DtheKyL5_WLWD1kHqyO2-7JyYK2PmaFNJgVxW2XJoQr8Gcdj4JOSU2IjxcdJrvLJFOM9O2_4LYbgCfsYPL4_PIm2S4LwMpdzAc5CGsBIVyYBnDGgMpCydC6BPCibB59j0Kg8UT9orZ2nDIgajNIKEkhP2VY1qfCMcUkY6tzn3rm-Kn0GfekR0FsSNQl9XXazhKyYLswwipXtccSjIDyKiEdhuqy3RLVoF0ZdpLSFMSnRpT3faLALtiMbrOMzuh7bms--8ZJt-5_5Vz27ipHwC47jqdk
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linearization+and+Lemma+of+Newton+for+operator+functions&rft.jtitle=Advances+in+operator+theory&rft.au=Stiefenhofer%2C+Matthias&rft.date=2025-10-01&rft.issn=2662-2009&rft.eissn=2538-225X&rft.volume=10&rft.issue=4&rft_id=info:doi/10.1007%2Fs43036-025-00472-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43036_025_00472_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-2009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-2009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-2009&client=summon