A Single-loop Proximal Subgradient Algorithm for A Class Structured Fractional Programs

In this paper, we investigate a class of nonconvex and nonsmooth fractional programming problems, where the numerator composed of two parts: a convex, nonsmooth function and a differentiable, nonconvex function, and the denominator consists of a convex, nonsmooth function composed of a linear operat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing Jg. 104; H. 3; S. 75
Hauptverfasser: Han, Deren, Tao, Min, Xia, Zihao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2025
Springer Nature B.V
Schlagworte:
ISSN:0885-7474, 1573-7691
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate a class of nonconvex and nonsmooth fractional programming problems, where the numerator composed of two parts: a convex, nonsmooth function and a differentiable, nonconvex function, and the denominator consists of a convex, nonsmooth function composed of a linear operator. These structured fractional programming problems have broad applications, including CT reconstruction, sparse signal recovery, the single-period optimal portfolio selection problem and standard Sharpe ratio minimization problem. We develop a single-loop proximal subgradient algorithm that alleviates computational complexity by decoupling the evaluation of the linear operator from the nonsmooth component. We prove the global convergence of the proposed single-loop algorithm to an exact lifted stationary point under the Kurdyka-Łojasiewicz assumption. Additionally, we present a practical variant incorporating a nonmonotone line search to improve computational efficiency. Finally, through extensive numerical simulations, we showcase the superiority of the proposed approach over the existing state-of-the-art methods for three applications: L 1 / S κ sparse signal recovery, limited-angle CT reconstruction, and optimal portfolio selection.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-025-02987-x