Integrating NSGA-II and Q-learning for Solving the Multi-objective Electric Vehicle Routing Problem with Battery Swapping Stations
Navigating the challenges of the Electric Vehicle Routing Problem with Battery Swapping Stations (EVRP-BSS), this work is centered on a multi-objective optimization task, simultaneously minimizing battery swap costs and energy consumption costs. Given the intricate nature of this problem and its rea...
Gespeichert in:
| Veröffentlicht in: | International journal of ITS research Jg. 23; H. 2; S. 840 - 856 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.08.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1348-8503, 1868-8659 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Navigating the challenges of the Electric Vehicle Routing Problem with Battery Swapping Stations (EVRP-BSS), this work is centered on a multi-objective optimization task, simultaneously minimizing battery swap costs and energy consumption costs. Given the intricate nature of this problem and its real- world implications, we propose a particular solution methodology. Our hybridized approach introduces a learn-heuristic that leverages the Non-dominated Sorting Genetic Algorithm II (NSGA II) and the Q-learning algorithm. This method not only addresses the NP-hard complexity of the problem but also aims to improve the sustainability and cost-effectiveness of electric vehicle routing operations. In contributing a fresh perspective to the discourse on efficient and eco-friendly transportation, our study explores novel avenues for sustainable solutions. The experiments showed the good performance of the proposed approach for solving the EVRP-BSS. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1348-8503 1868-8659 |
| DOI: | 10.1007/s13177-025-00486-9 |