Integrating NSGA-II and Q-learning for Solving the Multi-objective Electric Vehicle Routing Problem with Battery Swapping Stations
Navigating the challenges of the Electric Vehicle Routing Problem with Battery Swapping Stations (EVRP-BSS), this work is centered on a multi-objective optimization task, simultaneously minimizing battery swap costs and energy consumption costs. Given the intricate nature of this problem and its rea...
Uloženo v:
| Vydáno v: | International journal of ITS research Ročník 23; číslo 2; s. 840 - 856 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1348-8503, 1868-8659 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Navigating the challenges of the Electric Vehicle Routing Problem with Battery Swapping Stations (EVRP-BSS), this work is centered on a multi-objective optimization task, simultaneously minimizing battery swap costs and energy consumption costs. Given the intricate nature of this problem and its real- world implications, we propose a particular solution methodology. Our hybridized approach introduces a learn-heuristic that leverages the Non-dominated Sorting Genetic Algorithm II (NSGA II) and the Q-learning algorithm. This method not only addresses the NP-hard complexity of the problem but also aims to improve the sustainability and cost-effectiveness of electric vehicle routing operations. In contributing a fresh perspective to the discourse on efficient and eco-friendly transportation, our study explores novel avenues for sustainable solutions. The experiments showed the good performance of the proposed approach for solving the EVRP-BSS. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1348-8503 1868-8659 |
| DOI: | 10.1007/s13177-025-00486-9 |