Integrating NSGA-II and Q-learning for Solving the Multi-objective Electric Vehicle Routing Problem with Battery Swapping Stations

Navigating the challenges of the Electric Vehicle Routing Problem with Battery Swapping Stations (EVRP-BSS), this work is centered on a multi-objective optimization task, simultaneously minimizing battery swap costs and energy consumption costs. Given the intricate nature of this problem and its rea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of ITS research Ročník 23; číslo 2; s. 840 - 856
Hlavní autoři: Haddad, Anouar, Tlili, Takwa, Dahmani, Nadia, Krichen, Saoussen
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2025
Springer Nature B.V
Témata:
ISSN:1348-8503, 1868-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Navigating the challenges of the Electric Vehicle Routing Problem with Battery Swapping Stations (EVRP-BSS), this work is centered on a multi-objective optimization task, simultaneously minimizing battery swap costs and energy consumption costs. Given the intricate nature of this problem and its real- world implications, we propose a particular solution methodology. Our hybridized approach introduces a learn-heuristic that leverages the Non-dominated Sorting Genetic Algorithm II (NSGA II) and the Q-learning algorithm. This method not only addresses the NP-hard complexity of the problem but also aims to improve the sustainability and cost-effectiveness of electric vehicle routing operations. In contributing a fresh perspective to the discourse on efficient and eco-friendly transportation, our study explores novel avenues for sustainable solutions. The experiments showed the good performance of the proposed approach for solving the EVRP-BSS.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1348-8503
1868-8659
DOI:10.1007/s13177-025-00486-9