Constitutive Modeling of A286 Superalloy: Comparison of Improved Khan-Huang-Liang, Improved Johnson-Cook, and Genetic Algorithm-Backpropagation Artificial Neural Network Models

This study aims to develop high-precision constitutive models for A286 superalloy to accurately predict material flow stress and provide robust support for numerical simulations. Uniaxial quasi-static compression tests were performed to obtain the flow stress of A286 superalloy across strain rates f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of materials engineering and performance Ročník 34; číslo 23; s. 28170 - 28182
Hlavní autoři: Tao, Liang, Feng, Zhiguo, Jiang, Yulian, Mo, Ningning, Lu, Rengang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2025
Springer Nature B.V
Témata:
ISSN:1059-9495, 1544-1024
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study aims to develop high-precision constitutive models for A286 superalloy to accurately predict material flow stress and provide robust support for numerical simulations. Uniaxial quasi-static compression tests were performed to obtain the flow stress of A286 superalloy across strain rates from 0.01 to 10 s −1 and temperatures from 25 to 600 °C. Based on the experimental data, three constitutive models were developed: an improved Khan-Huang-Liang (KHL) model, an improved Johnson-Cook (J-C) model, and a genetic algorithm-backpropagation artificial neural network (GA-BP ANN) model. The accuracy of the three models in predicting flow stress and their performance in numerical simulations were evaluated using the correlation coefficient ( R ), average absolute relative error ( AARE ), and relative error ( RE ). Results demonstrate that all three models effectively predict the material’s flow stress and are successfully applied in thin-walled tube simulations. Among them, the GA-BP ANN model achieves the highest accuracy in predicting flow stress ( R  = 0.999, AARE  = 1.6%) and simulation precision ( RE  = − 5.1%), followed by the improved J-C model ( R  = 0.979, AARE  = 1.7%, RE  = − 5.3%), and the improved KHL model with the lowest performance ( R  = 0.953, AARE  = 3.5%, RE  = − 6.2%).
AbstractList This study aims to develop high-precision constitutive models for A286 superalloy to accurately predict material flow stress and provide robust support for numerical simulations. Uniaxial quasi-static compression tests were performed to obtain the flow stress of A286 superalloy across strain rates from 0.01 to 10 s−1 and temperatures from 25 to 600 °C. Based on the experimental data, three constitutive models were developed: an improved Khan-Huang-Liang (KHL) model, an improved Johnson-Cook (J-C) model, and a genetic algorithm-backpropagation artificial neural network (GA-BP ANN) model. The accuracy of the three models in predicting flow stress and their performance in numerical simulations were evaluated using the correlation coefficient (R), average absolute relative error (AARE), and relative error (RE). Results demonstrate that all three models effectively predict the material’s flow stress and are successfully applied in thin-walled tube simulations. Among them, the GA-BP ANN model achieves the highest accuracy in predicting flow stress (R = 0.999, AARE = 1.6%) and simulation precision (RE = − 5.1%), followed by the improved J-C model (R = 0.979, AARE = 1.7%, RE = − 5.3%), and the improved KHL model with the lowest performance (R = 0.953, AARE = 3.5%, RE = − 6.2%).
This study aims to develop high-precision constitutive models for A286 superalloy to accurately predict material flow stress and provide robust support for numerical simulations. Uniaxial quasi-static compression tests were performed to obtain the flow stress of A286 superalloy across strain rates from 0.01 to 10 s −1 and temperatures from 25 to 600 °C. Based on the experimental data, three constitutive models were developed: an improved Khan-Huang-Liang (KHL) model, an improved Johnson-Cook (J-C) model, and a genetic algorithm-backpropagation artificial neural network (GA-BP ANN) model. The accuracy of the three models in predicting flow stress and their performance in numerical simulations were evaluated using the correlation coefficient ( R ), average absolute relative error ( AARE ), and relative error ( RE ). Results demonstrate that all three models effectively predict the material’s flow stress and are successfully applied in thin-walled tube simulations. Among them, the GA-BP ANN model achieves the highest accuracy in predicting flow stress ( R  = 0.999, AARE  = 1.6%) and simulation precision ( RE  = − 5.1%), followed by the improved J-C model ( R  = 0.979, AARE  = 1.7%, RE  = − 5.3%), and the improved KHL model with the lowest performance ( R  = 0.953, AARE  = 3.5%, RE  = − 6.2%).
Author Tao, Liang
Lu, Rengang
Jiang, Yulian
Feng, Zhiguo
Mo, Ningning
Author_xml – sequence: 1
  givenname: Liang
  surname: Tao
  fullname: Tao, Liang
  organization: School of Mechanical Engineering, Guizhou University, School of Mechanical Engineering, Guizhou Institute of Technology
– sequence: 2
  givenname: Zhiguo
  surname: Feng
  fullname: Feng, Zhiguo
  email: zgfeng@gzu.edu.cn
  organization: School of Mechanical Engineering, Guizhou University, Key Laboratory of Special Equipment and Manufacturing Technology, Guizhou University
– sequence: 3
  givenname: Yulian
  surname: Jiang
  fullname: Jiang, Yulian
  organization: School of Mechanical Engineering, Guizhou University
– sequence: 4
  givenname: Ningning
  surname: Mo
  fullname: Mo, Ningning
  organization: School of Mechanical Engineering, Guizhou University
– sequence: 5
  givenname: Rengang
  surname: Lu
  fullname: Lu, Rengang
  organization: School of Mechanical Engineering, Guizhou University
BookMark eNp9kcFu1DAQhi1UJNrCC3CyxLUG27GdmNsSQVtY4ACcLdexs-5m7WA7XfWteETcBqk3LjMjzff_M9J_Bk5CDBaA1wS_JRi37zIhQnCEKUeEsFqPz8Ap4Ywhgik7qTPmEkkm-QtwlvMtriJK2Sn408eQiy9L8XcWfo2DnXwYYXRwQzsBfyyzTXqa4v172MfDrJPPMTysrw9zind2gF92OqCrRYcRbX2tF0-rz3EXKo76GPcXUIcBXtpgizdwM40x-bI7oA_a7Cs-61EXX603qXjnjdcT_GaX9NjKMab9-lx-CZ47PWX76l8_B78-ffzZX6Ht98vrfrNFhra0IGmFbIRt3EC6gWLhGtdi0TLsqOFU31hpRCuwsKa7MVhKRl3XtbwbmMWES9acgzerb33u92JzUbdxSaGeVA1tBWeCy65SdKVMijkn69Sc_EGne0WwekhGrcmomox6TEYdq6hZRbnCYbTpyfo_qr9RV5Vq
Cites_doi 10.1016/j.polymertesting.2022.107831
10.1007/s11665-017-2990-2
10.1016/j.engappai.2022.105475
10.1016/j.mtcomm.2020.101329
10.1016/j.msea.2019.138552
10.1016/j.ijplas.2012.03.015
10.1007/s12034-019-1987-x
10.1016/j.ijfatigue.2022.106836
10.1080/15376494.2020.1765266
10.1016/j.ijmecsci.2020.105552
10.1016/j.ijplas.2009.10.008
10.1177/09544054221078144
10.1016/j.matchar.2022.111778
10.1007/s12541-023-00811-w
10.1016/j.jallcom.2022.164580
10.1016/j.jmapro.2020.09.063
10.1002/adem.202000704
10.1016/j.matchar.2004.03.007
10.1007/s12666-021-02259-w
10.1007/s11665-022-07181-w
10.1016/j.jallcom.2022.168488
10.1016/j.vacuum.2022.111749
10.1016/j.engstruct.2022.114026
10.1007/s11665-023-08030-0
10.1007/s10704-023-00735-6
10.1016/j.msea.2020.140491
10.1016/j.ijoes.2023.100208
10.1016/j.ijmecsci.2019.105178
10.1016/j.mechmat.2021.103817
10.1016/S0749-6419(02)00091-8
10.1007/s11069-019-03806-x
10.1007/s00170-023-10908-1
ContentType Journal Article
Copyright ASM International 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ASM International 2025.
Copyright_xml – notice: ASM International 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: ASM International 2025.
DBID AAYXX
CITATION
DOI 10.1007/s11665-025-11425-w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1544-1024
EndPage 28182
ExternalDocumentID 10_1007_s11665_025_11425_w
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
88I
8AF
8FE
8FG
8TC
8UJ
8WZ
95-
95.
95~
96X
9M8
A6W
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACSVP
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
CZ9
D-I
D1I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KB.
KC.
KDC
KOV
L6V
LLZTM
M2P
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PDBOC
PF0
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
ULE
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
XSW
YLTOR
Z45
ZMTXR
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c272t-9e6936e3fd18d206f3f706740f2c52abe9c67606ec8bc09942f88758d4e015943
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001493762500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1059-9495
IngestDate Sun Nov 30 03:41:26 EST 2025
Sat Nov 29 07:53:38 EST 2025
Sat Nov 29 01:24:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords genetic algorithm
artificial neural network
constitutive model
numerical simulation
superalloy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-9e6936e3fd18d206f3f706740f2c52abe9c67606ec8bc09942f88758d4e015943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3276546598
PQPubID 14822
PageCount 13
ParticipantIDs proquest_journals_3276546598
crossref_primary_10_1007_s11665_025_11425_w
springer_journals_10_1007_s11665_025_11425_w
PublicationCentury 2000
PublicationDate 20251200
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 20251200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials engineering and performance
PublicationTitleAbbrev J. of Materi Eng and Perform
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References H De Cicco (11425_CR1) 2004; 52
H Farahani (11425_CR7) 2017; 26
D Besdo (11425_CR6) 2003; 19
H Zhu (11425_CR4) 2021; 157
C Zhu (11425_CR25) 2020; 100
11425_CR33
M Abdel-Karim (11425_CR20) 2010; 26
S Rasaee (11425_CR23) 2020; 43
X-M Chen (11425_CR8) 2021; 23
J Sun (11425_CR22) 2023; 243
D Wang (11425_CR15) 2022; 908
Z Li (11425_CR16) 2023; 22
S Wu (11425_CR28) 2022; 116
X Chen (11425_CR32) 2020; 59
D Wen (11425_CR29) 2021; 803
Y Wang (11425_CR17) 2023; 32
AS Khan (11425_CR19) 2012; 38
11425_CR2
L Huang (11425_CR11) 2022; 257
11425_CR3
11425_CR35
Y Zhu (11425_CR30) 2020; 25
G Yu (11425_CR13) 2023; 938
Z Liang (11425_CR37) 2023; 117
A Saxena (11425_CR24) 2022; 29
Q Wang (11425_CR34) 2021; 12
S Liu (11425_CR12) 2022; 160
L Zhang (11425_CR9) 2020; 771
KH Sim (11425_CR21) 2024; 33
R Luo (11425_CR14) 2021; 74
X Wang (11425_CR31) 2023; 125
KH Sim (11425_CR10) 2023; 210
C Yan (11425_CR5) 2020; 177
Y Xie (11425_CR27) 2023; 24
W Wei (11425_CR26) 2022; 236
L Yi (11425_CR36) 2012; 138
H Qin (11425_CR18) 2024; 30
References_xml – volume: 117
  start-page: 107831
  year: 2023
  ident: 11425_CR37
  publication-title: Polym. Testing
  doi: 10.1016/j.polymertesting.2022.107831
– volume: 26
  start-page: 5284
  year: 2017
  ident: 11425_CR7
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-017-2990-2
– volume: 116
  start-page: 105475
  year: 2022
  ident: 11425_CR28
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105475
– volume: 25
  start-page: 101329
  year: 2020
  ident: 11425_CR30
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2020.101329
– volume: 771
  start-page: 138552
  year: 2020
  ident: 11425_CR9
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138552
– volume: 38
  start-page: 1
  year: 2012
  ident: 11425_CR19
  publication-title: Int. J. Plastic.
  doi: 10.1016/j.ijplas.2012.03.015
– volume: 43
  start-page: 23
  issue: 1
  year: 2020
  ident: 11425_CR23
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/s12034-019-1987-x
– volume: 160
  start-page: 106836
  year: 2022
  ident: 11425_CR12
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2022.106836
– volume: 29
  start-page: 285
  issue: 2
  year: 2022
  ident: 11425_CR24
  publication-title: Mech. Adv. Mater. Struct.
  doi: 10.1080/15376494.2020.1765266
– volume: 177
  start-page: 105552
  year: 2020
  ident: 11425_CR5
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.105552
– volume: 26
  start-page: 758
  issue: 5
  year: 2010
  ident: 11425_CR20
  publication-title: Int. J. Plastic.
  doi: 10.1016/j.ijplas.2009.10.008
– volume: 236
  start-page: 1564
  issue: 12
  year: 2022
  ident: 11425_CR26
  publication-title: Proceed. Inst. Mech. Eng., Part B: J. Eng. Manuf.
  doi: 10.1177/09544054221078144
– ident: 11425_CR3
  doi: 10.1016/j.matchar.2022.111778
– volume: 24
  start-page: 1129
  issue: 7
  year: 2023
  ident: 11425_CR27
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-023-00811-w
– volume: 908
  start-page: 164580
  year: 2022
  ident: 11425_CR15
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2022.164580
– volume: 59
  start-page: 326
  year: 2020
  ident: 11425_CR32
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2020.09.063
– ident: 11425_CR35
– volume: 23
  start-page: 2000704
  issue: 1
  year: 2021
  ident: 11425_CR8
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.202000704
– volume: 52
  start-page: 85
  issue: 2
  year: 2004
  ident: 11425_CR1
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2004.03.007
– volume: 74
  start-page: 1809
  issue: 7
  year: 2021
  ident: 11425_CR14
  publication-title: Trans. Indian Inst. Met.
  doi: 10.1007/s12666-021-02259-w
– volume: 32
  start-page: 1213
  issue: 3
  year: 2023
  ident: 11425_CR17
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-022-07181-w
– volume: 138
  start-page: 466
  year: 2012
  ident: 11425_CR36
  publication-title: Appl. Mech. Mater.
– volume: 12
  start-page: 2348
  year: 2021
  ident: 11425_CR34
  publication-title: J. Market. Res.
– volume: 938
  start-page: 168488
  year: 2023
  ident: 11425_CR13
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2022.168488
– volume: 210
  start-page: 111749
  year: 2023
  ident: 11425_CR10
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2022.111749
– volume: 30
  start-page: 2848
  year: 2024
  ident: 11425_CR18
  publication-title: J. Market. Res.
– volume: 22
  start-page: 1165
  year: 2023
  ident: 11425_CR16
  publication-title: J. Market. Res.
– volume: 257
  start-page: 114026
  year: 2022
  ident: 11425_CR11
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.114026
– volume: 33
  start-page: 1021
  issue: 2
  year: 2024
  ident: 11425_CR21
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-023-08030-0
– volume: 243
  start-page: 105
  issue: 1
  year: 2023
  ident: 11425_CR22
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-023-00735-6
– volume: 803
  start-page: 140491
  year: 2021
  ident: 11425_CR29
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.140491
– ident: 11425_CR2
  doi: 10.1016/j.ijoes.2023.100208
– ident: 11425_CR33
  doi: 10.1016/j.ijmecsci.2019.105178
– volume: 157
  start-page: 103817
  year: 2021
  ident: 11425_CR4
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2021.103817
– volume: 19
  start-page: 1019
  issue: 7
  year: 2003
  ident: 11425_CR6
  publication-title: Int. J. Plast.
  doi: 10.1016/S0749-6419(02)00091-8
– volume: 100
  start-page: 173
  year: 2020
  ident: 11425_CR25
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-019-03806-x
– volume: 125
  start-page: 2339
  issue: 5
  year: 2023
  ident: 11425_CR31
  publication-title: Int. J. Adv. Manuf. Tech.
  doi: 10.1007/s00170-023-10908-1
SSID ssj0007224
Score 2.402852
Snippet This study aims to develop high-precision constitutive models for A286 superalloy to accurately predict material flow stress and provide robust support for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 28170
SubjectTerms Accuracy
Artificial neural networks
Back propagation
Back propagation networks
Characterization and Evaluation of Materials
Chemistry and Materials Science
Compression tests
Computer simulation
Constitutive models
Correlation coefficients
Corrosion and Coatings
Deformation
Engineering Design
Genetic algorithms
Heat treating
Materials Science
Metal fatigue
Neural networks
Original Research Article
Quality Control
Reliability
Safety and Risk
Simulation
Software
Strain hardening
Superalloys
Temperature
Titanium alloys
Tribology
Yield strength
Yield stress
Title Constitutive Modeling of A286 Superalloy: Comparison of Improved Khan-Huang-Liang, Improved Johnson-Cook, and Genetic Algorithm-Backpropagation Artificial Neural Network Models
URI https://link.springer.com/article/10.1007/s11665-025-11425-w
https://www.proquest.com/docview/3276546598
Volume 34
WOSCitedRecordID wos001493762500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Online Journals
  customDbUrl:
  eissn: 1544-1024
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007224
  issn: 1059-9495
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYK5VAOpeUhlkflAzfWUtZO_OC2rEArUaGKLWhvUeLHgoAs2geo_6o_sWMn2QCCQznlMJY10oxnvtgz8yF0YCJpFLMdknOZkVhYRpTRmmiV2VwIljHuAtmEOD-Xw6H6VTWFTetq9_pJMkTqptmtw7nvJk6I7_9MyNMS-gzpTnrChovB1SL-ClpS2QJwIArwf9Uq8_YeL9NRgzFfPYuGbHO69jE9v6GvFbrE3dIdvqNPtlhHq89mDm6gv56iM9QHQJzDngrNN6TjscNdKjkezB_8LdXd-M8R7i04Cr24vH6wBp9dZwXpz7NiRH6Cc43ajaji2yI9gO5tnBUG-7HWoAzu3o3Gk5vZ9T05zvQtLIdAFpwiKFuOscB-Ukj4hNL0UrnpJro8Pfnd65OKtoFoKuiMKMsV45Y505GGRtwxJyAnxpGjOqFZbpXmAv6brJa5BoAaUweRLpEmtoBNVMy20HIxLuw2wkJzHgPETLiIYsuozI2BGJVb1-GJ01ELHdbWSx_K6RxpM4fZ2yEFO6TBDulTC-3VBk6rkzpNGRWBEF7JFmrXBm3E7--283_Ld9EXGnzCV8LsoeXZZG730Yp-nN1MJz-CB_8DRgft2g
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VFgk4UB5FLLTgAzfWUtZO_OhtWVFt1WWFaEG9RYkf24qSrfZBxb_qT2TsJA0gONBTDraskWYy88WZ-T6ANzZRVnM3oKVQBU2l41RbY6jRhSul5AUXPopNyOlUnZ7qj81Q2LLtdm9_ScZM3Q27DYQI08QZDfOfGb26A1spVqzAmP_p-MtN_pWslrJF4EA14v9mVObvZ_xejjqM-cdv0VhtDrZvZ-cjeNigSzKsw-ExbLjqCTz4hXPwKVwHic7YH4B5jgQptDCQTuaeDJkS5Hh9GW6pLuY_9snoRqMwLNfXD86So7OiouN1Uc3oBINr1u-WGr0tOkLo3idFZUmgtUZjyPBiNl-cr86-0XeF-YrbMZHFoIjG1jQWJDCFxEdsTa-NW-7A54P3J6MxbWQbqGGSrah2QnPhuLcDZVkiPPcSa2KaeGYyVpROGyHxu8kZVRoEqCnzmOkyZVOH2ESn_BlsVvPKPQcijRApQsxMyCR1nKnSWsxRpfMDkXmT9OBt6738smbnyDse5uCHHP2QRz_kVz3YbR2cN2_qMudMRkF4rXrQbx3aLf_7tBf_t_013BuffJjkk8Pp0Uu4z2J8hK6YXdhcLdZuD-6a76vz5eJVjOafdDHwvg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7xEqIHKBTUAG196K2x2Ni7fnBL00ZUoAgJiritdv0ICNhEyaao_4qfiO3dsFCVQ9XTHmxZI83s-LM9830An3UktKSmg3MmMhxzQ7HUSmElM5NzTjPKbBCb4IOBuLyUp8-6-EO1-_xJsupp8CxNRXkw1vagaXzrMOY7ixPse0ETfL8Iy7EvpPfn9bOLp1zMSSVr60AElu4sULfN_H2Nl1tTgzf_eCINO09_4_9tfgvrNepE3SpMNmHBFFvw5hkX4Tt48NKdoW7A5T_kJdJ8ozoaWdQlgqGz2djfXt2Ofh-i3pN2oR-uriWMRsdXWYGPZlkxxCcu6IbtZqjW4cI9B-nbKCs08nTXzhjUvR2OJtfl1R3-mqkbN90luBAswdiK3gJ5BpHwCSXrlXHTbfjZ_37eO8K1nANWhJMSS8MkZYZa3RGaRMxSy91eGUeWqIRkuZGKcXeeMkrkygHXmFiXAROhY-Mwi4zpDiwVo8K8B8QVY7GDngnjUWwoEbnWLnflxnZYYlXUgi9zT6bjirUjbfiZvR9S54c0-CG9b8H-3Nlp_QdPU0p4EIqXogXtuXOb4ddX2_236Z9g9fRbPz35MTjegzUSwsMXy-zDUjmZmQ-won6V19PJxxDYj0ut-aI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constitutive+Modeling+of+A286+Superalloy%3A+Comparison+of+Improved+Khan-Huang-Liang%2C+Improved+Johnson-Cook%2C+and+Genetic+Algorithm-Backpropagation+Artificial+Neural+Network+Models&rft.jtitle=Journal+of+materials+engineering+and+performance&rft.au=Tao%2C+Liang&rft.au=Feng%2C+Zhiguo&rft.au=Jiang%2C+Yulian&rft.au=Mo%2C+Ningning&rft.date=2025-12-01&rft.pub=Springer+US&rft.issn=1059-9495&rft.eissn=1544-1024&rft.volume=34&rft.issue=23&rft.spage=28170&rft.epage=28182&rft_id=info:doi/10.1007%2Fs11665-025-11425-w&rft.externalDocID=10_1007_s11665_025_11425_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-9495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-9495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-9495&client=summon