Constitutive Modeling of A286 Superalloy: Comparison of Improved Khan-Huang-Liang, Improved Johnson-Cook, and Genetic Algorithm-Backpropagation Artificial Neural Network Models
This study aims to develop high-precision constitutive models for A286 superalloy to accurately predict material flow stress and provide robust support for numerical simulations. Uniaxial quasi-static compression tests were performed to obtain the flow stress of A286 superalloy across strain rates f...
Uloženo v:
| Vydáno v: | Journal of materials engineering and performance Ročník 34; číslo 23; s. 28170 - 28182 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.12.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1059-9495, 1544-1024 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study aims to develop high-precision constitutive models for A286 superalloy to accurately predict material flow stress and provide robust support for numerical simulations. Uniaxial quasi-static compression tests were performed to obtain the flow stress of A286 superalloy across strain rates from 0.01 to 10 s
−1
and temperatures from 25 to 600 °C. Based on the experimental data, three constitutive models were developed: an improved Khan-Huang-Liang (KHL) model, an improved Johnson-Cook (J-C) model, and a genetic algorithm-backpropagation artificial neural network (GA-BP ANN) model. The accuracy of the three models in predicting flow stress and their performance in numerical simulations were evaluated using the correlation coefficient (
R
), average absolute relative error (
AARE
), and relative error (
RE
). Results demonstrate that all three models effectively predict the material’s flow stress and are successfully applied in thin-walled tube simulations. Among them, the GA-BP ANN model achieves the highest accuracy in predicting flow stress (
R
= 0.999,
AARE
= 1.6%) and simulation precision (
RE
= − 5.1%), followed by the improved J-C model (
R
= 0.979,
AARE
= 1.7%,
RE
= − 5.3%), and the improved KHL model with the lowest performance (
R
= 0.953,
AARE
= 3.5%,
RE
= − 6.2%). |
|---|---|
| AbstractList | This study aims to develop high-precision constitutive models for A286 superalloy to accurately predict material flow stress and provide robust support for numerical simulations. Uniaxial quasi-static compression tests were performed to obtain the flow stress of A286 superalloy across strain rates from 0.01 to 10 s−1 and temperatures from 25 to 600 °C. Based on the experimental data, three constitutive models were developed: an improved Khan-Huang-Liang (KHL) model, an improved Johnson-Cook (J-C) model, and a genetic algorithm-backpropagation artificial neural network (GA-BP ANN) model. The accuracy of the three models in predicting flow stress and their performance in numerical simulations were evaluated using the correlation coefficient (R), average absolute relative error (AARE), and relative error (RE). Results demonstrate that all three models effectively predict the material’s flow stress and are successfully applied in thin-walled tube simulations. Among them, the GA-BP ANN model achieves the highest accuracy in predicting flow stress (R = 0.999, AARE = 1.6%) and simulation precision (RE = − 5.1%), followed by the improved J-C model (R = 0.979, AARE = 1.7%, RE = − 5.3%), and the improved KHL model with the lowest performance (R = 0.953, AARE = 3.5%, RE = − 6.2%). This study aims to develop high-precision constitutive models for A286 superalloy to accurately predict material flow stress and provide robust support for numerical simulations. Uniaxial quasi-static compression tests were performed to obtain the flow stress of A286 superalloy across strain rates from 0.01 to 10 s −1 and temperatures from 25 to 600 °C. Based on the experimental data, three constitutive models were developed: an improved Khan-Huang-Liang (KHL) model, an improved Johnson-Cook (J-C) model, and a genetic algorithm-backpropagation artificial neural network (GA-BP ANN) model. The accuracy of the three models in predicting flow stress and their performance in numerical simulations were evaluated using the correlation coefficient ( R ), average absolute relative error ( AARE ), and relative error ( RE ). Results demonstrate that all three models effectively predict the material’s flow stress and are successfully applied in thin-walled tube simulations. Among them, the GA-BP ANN model achieves the highest accuracy in predicting flow stress ( R = 0.999, AARE = 1.6%) and simulation precision ( RE = − 5.1%), followed by the improved J-C model ( R = 0.979, AARE = 1.7%, RE = − 5.3%), and the improved KHL model with the lowest performance ( R = 0.953, AARE = 3.5%, RE = − 6.2%). |
| Author | Tao, Liang Lu, Rengang Jiang, Yulian Feng, Zhiguo Mo, Ningning |
| Author_xml | – sequence: 1 givenname: Liang surname: Tao fullname: Tao, Liang organization: School of Mechanical Engineering, Guizhou University, School of Mechanical Engineering, Guizhou Institute of Technology – sequence: 2 givenname: Zhiguo surname: Feng fullname: Feng, Zhiguo email: zgfeng@gzu.edu.cn organization: School of Mechanical Engineering, Guizhou University, Key Laboratory of Special Equipment and Manufacturing Technology, Guizhou University – sequence: 3 givenname: Yulian surname: Jiang fullname: Jiang, Yulian organization: School of Mechanical Engineering, Guizhou University – sequence: 4 givenname: Ningning surname: Mo fullname: Mo, Ningning organization: School of Mechanical Engineering, Guizhou University – sequence: 5 givenname: Rengang surname: Lu fullname: Lu, Rengang organization: School of Mechanical Engineering, Guizhou University |
| BookMark | eNp9kcFu1DAQhi1UJNrCC3CyxLUG27GdmNsSQVtY4ACcLdexs-5m7WA7XfWteETcBqk3LjMjzff_M9J_Bk5CDBaA1wS_JRi37zIhQnCEKUeEsFqPz8Ap4Ywhgik7qTPmEkkm-QtwlvMtriJK2Sn408eQiy9L8XcWfo2DnXwYYXRwQzsBfyyzTXqa4v172MfDrJPPMTysrw9zind2gF92OqCrRYcRbX2tF0-rz3EXKo76GPcXUIcBXtpgizdwM40x-bI7oA_a7Cs-61EXX603qXjnjdcT_GaX9NjKMab9-lx-CZ47PWX76l8_B78-ffzZX6Ht98vrfrNFhra0IGmFbIRt3EC6gWLhGtdi0TLsqOFU31hpRCuwsKa7MVhKRl3XtbwbmMWES9acgzerb33u92JzUbdxSaGeVA1tBWeCy65SdKVMijkn69Sc_EGne0WwekhGrcmomox6TEYdq6hZRbnCYbTpyfo_qr9RV5Vq |
| Cites_doi | 10.1016/j.polymertesting.2022.107831 10.1007/s11665-017-2990-2 10.1016/j.engappai.2022.105475 10.1016/j.mtcomm.2020.101329 10.1016/j.msea.2019.138552 10.1016/j.ijplas.2012.03.015 10.1007/s12034-019-1987-x 10.1016/j.ijfatigue.2022.106836 10.1080/15376494.2020.1765266 10.1016/j.ijmecsci.2020.105552 10.1016/j.ijplas.2009.10.008 10.1177/09544054221078144 10.1016/j.matchar.2022.111778 10.1007/s12541-023-00811-w 10.1016/j.jallcom.2022.164580 10.1016/j.jmapro.2020.09.063 10.1002/adem.202000704 10.1016/j.matchar.2004.03.007 10.1007/s12666-021-02259-w 10.1007/s11665-022-07181-w 10.1016/j.jallcom.2022.168488 10.1016/j.vacuum.2022.111749 10.1016/j.engstruct.2022.114026 10.1007/s11665-023-08030-0 10.1007/s10704-023-00735-6 10.1016/j.msea.2020.140491 10.1016/j.ijoes.2023.100208 10.1016/j.ijmecsci.2019.105178 10.1016/j.mechmat.2021.103817 10.1016/S0749-6419(02)00091-8 10.1007/s11069-019-03806-x 10.1007/s00170-023-10908-1 |
| ContentType | Journal Article |
| Copyright | ASM International 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. ASM International 2025. |
| Copyright_xml | – notice: ASM International 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: ASM International 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11665-025-11425-w |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1544-1024 |
| EndPage | 28182 |
| ExternalDocumentID | 10_1007_s11665_025_11425_w |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 88I 8AF 8FE 8FG 8TC 8UJ 8WZ 95- 95. 95~ 96X 9M8 A6W AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACSVP ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP CZ9 D-I D1I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KB. KC. KDC KOV L6V LLZTM M2P M4Y M7S MA- MK~ N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PDBOC PF0 PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PT5 PTHSS Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 ULE UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 XSW YLTOR Z45 ZMTXR ~EX AAYXX CITATION |
| ID | FETCH-LOGICAL-c272t-9e6936e3fd18d206f3f706740f2c52abe9c67606ec8bc09942f88758d4e015943 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001493762500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1059-9495 |
| IngestDate | Sun Nov 30 03:41:26 EST 2025 Sat Nov 29 07:53:38 EST 2025 Sat Nov 29 01:24:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | genetic algorithm artificial neural network constitutive model numerical simulation superalloy |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-9e6936e3fd18d206f3f706740f2c52abe9c67606ec8bc09942f88758d4e015943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3276546598 |
| PQPubID | 14822 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3276546598 crossref_primary_10_1007_s11665_025_11425_w springer_journals_10_1007_s11665_025_11425_w |
| PublicationCentury | 2000 |
| PublicationDate | 20251200 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 20251200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of materials engineering and performance |
| PublicationTitleAbbrev | J. of Materi Eng and Perform |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | H De Cicco (11425_CR1) 2004; 52 H Farahani (11425_CR7) 2017; 26 D Besdo (11425_CR6) 2003; 19 H Zhu (11425_CR4) 2021; 157 C Zhu (11425_CR25) 2020; 100 11425_CR33 M Abdel-Karim (11425_CR20) 2010; 26 S Rasaee (11425_CR23) 2020; 43 X-M Chen (11425_CR8) 2021; 23 J Sun (11425_CR22) 2023; 243 D Wang (11425_CR15) 2022; 908 Z Li (11425_CR16) 2023; 22 S Wu (11425_CR28) 2022; 116 X Chen (11425_CR32) 2020; 59 D Wen (11425_CR29) 2021; 803 Y Wang (11425_CR17) 2023; 32 AS Khan (11425_CR19) 2012; 38 11425_CR2 L Huang (11425_CR11) 2022; 257 11425_CR3 11425_CR35 Y Zhu (11425_CR30) 2020; 25 G Yu (11425_CR13) 2023; 938 Z Liang (11425_CR37) 2023; 117 A Saxena (11425_CR24) 2022; 29 Q Wang (11425_CR34) 2021; 12 S Liu (11425_CR12) 2022; 160 L Zhang (11425_CR9) 2020; 771 KH Sim (11425_CR21) 2024; 33 R Luo (11425_CR14) 2021; 74 X Wang (11425_CR31) 2023; 125 KH Sim (11425_CR10) 2023; 210 C Yan (11425_CR5) 2020; 177 Y Xie (11425_CR27) 2023; 24 W Wei (11425_CR26) 2022; 236 L Yi (11425_CR36) 2012; 138 H Qin (11425_CR18) 2024; 30 |
| References_xml | – volume: 117 start-page: 107831 year: 2023 ident: 11425_CR37 publication-title: Polym. Testing doi: 10.1016/j.polymertesting.2022.107831 – volume: 26 start-page: 5284 year: 2017 ident: 11425_CR7 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-017-2990-2 – volume: 116 start-page: 105475 year: 2022 ident: 11425_CR28 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105475 – volume: 25 start-page: 101329 year: 2020 ident: 11425_CR30 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2020.101329 – volume: 771 start-page: 138552 year: 2020 ident: 11425_CR9 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138552 – volume: 38 start-page: 1 year: 2012 ident: 11425_CR19 publication-title: Int. J. Plastic. doi: 10.1016/j.ijplas.2012.03.015 – volume: 43 start-page: 23 issue: 1 year: 2020 ident: 11425_CR23 publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-019-1987-x – volume: 160 start-page: 106836 year: 2022 ident: 11425_CR12 publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2022.106836 – volume: 29 start-page: 285 issue: 2 year: 2022 ident: 11425_CR24 publication-title: Mech. Adv. Mater. Struct. doi: 10.1080/15376494.2020.1765266 – volume: 177 start-page: 105552 year: 2020 ident: 11425_CR5 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.105552 – volume: 26 start-page: 758 issue: 5 year: 2010 ident: 11425_CR20 publication-title: Int. J. Plastic. doi: 10.1016/j.ijplas.2009.10.008 – volume: 236 start-page: 1564 issue: 12 year: 2022 ident: 11425_CR26 publication-title: Proceed. Inst. Mech. Eng., Part B: J. Eng. Manuf. doi: 10.1177/09544054221078144 – ident: 11425_CR3 doi: 10.1016/j.matchar.2022.111778 – volume: 24 start-page: 1129 issue: 7 year: 2023 ident: 11425_CR27 publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-023-00811-w – volume: 908 start-page: 164580 year: 2022 ident: 11425_CR15 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2022.164580 – volume: 59 start-page: 326 year: 2020 ident: 11425_CR32 publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2020.09.063 – ident: 11425_CR35 – volume: 23 start-page: 2000704 issue: 1 year: 2021 ident: 11425_CR8 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202000704 – volume: 52 start-page: 85 issue: 2 year: 2004 ident: 11425_CR1 publication-title: Mater Charact doi: 10.1016/j.matchar.2004.03.007 – volume: 74 start-page: 1809 issue: 7 year: 2021 ident: 11425_CR14 publication-title: Trans. Indian Inst. Met. doi: 10.1007/s12666-021-02259-w – volume: 32 start-page: 1213 issue: 3 year: 2023 ident: 11425_CR17 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-022-07181-w – volume: 138 start-page: 466 year: 2012 ident: 11425_CR36 publication-title: Appl. Mech. Mater. – volume: 12 start-page: 2348 year: 2021 ident: 11425_CR34 publication-title: J. Market. Res. – volume: 938 start-page: 168488 year: 2023 ident: 11425_CR13 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2022.168488 – volume: 210 start-page: 111749 year: 2023 ident: 11425_CR10 publication-title: Vacuum doi: 10.1016/j.vacuum.2022.111749 – volume: 30 start-page: 2848 year: 2024 ident: 11425_CR18 publication-title: J. Market. Res. – volume: 22 start-page: 1165 year: 2023 ident: 11425_CR16 publication-title: J. Market. Res. – volume: 257 start-page: 114026 year: 2022 ident: 11425_CR11 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.114026 – volume: 33 start-page: 1021 issue: 2 year: 2024 ident: 11425_CR21 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-023-08030-0 – volume: 243 start-page: 105 issue: 1 year: 2023 ident: 11425_CR22 publication-title: Int. J. Fract. doi: 10.1007/s10704-023-00735-6 – volume: 803 start-page: 140491 year: 2021 ident: 11425_CR29 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.140491 – ident: 11425_CR2 doi: 10.1016/j.ijoes.2023.100208 – ident: 11425_CR33 doi: 10.1016/j.ijmecsci.2019.105178 – volume: 157 start-page: 103817 year: 2021 ident: 11425_CR4 publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2021.103817 – volume: 19 start-page: 1019 issue: 7 year: 2003 ident: 11425_CR6 publication-title: Int. J. Plast. doi: 10.1016/S0749-6419(02)00091-8 – volume: 100 start-page: 173 year: 2020 ident: 11425_CR25 publication-title: Nat. Hazards doi: 10.1007/s11069-019-03806-x – volume: 125 start-page: 2339 issue: 5 year: 2023 ident: 11425_CR31 publication-title: Int. J. Adv. Manuf. Tech. doi: 10.1007/s00170-023-10908-1 |
| SSID | ssj0007224 |
| Score | 2.402852 |
| Snippet | This study aims to develop high-precision constitutive models for A286 superalloy to accurately predict material flow stress and provide robust support for... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 28170 |
| SubjectTerms | Accuracy Artificial neural networks Back propagation Back propagation networks Characterization and Evaluation of Materials Chemistry and Materials Science Compression tests Computer simulation Constitutive models Correlation coefficients Corrosion and Coatings Deformation Engineering Design Genetic algorithms Heat treating Materials Science Metal fatigue Neural networks Original Research Article Quality Control Reliability Safety and Risk Simulation Software Strain hardening Superalloys Temperature Titanium alloys Tribology Yield strength Yield stress |
| Title | Constitutive Modeling of A286 Superalloy: Comparison of Improved Khan-Huang-Liang, Improved Johnson-Cook, and Genetic Algorithm-Backpropagation Artificial Neural Network Models |
| URI | https://link.springer.com/article/10.1007/s11665-025-11425-w https://www.proquest.com/docview/3276546598 |
| Volume | 34 |
| WOSCitedRecordID | wos001493762500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Online Journals customDbUrl: eissn: 1544-1024 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007224 issn: 1059-9495 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYK5VAOpeUhlkflAzfWUtZO_OC2rEArUaGKLWhvUeLHgoAs2geo_6o_sWMn2QCCQznlMJY10oxnvtgz8yF0YCJpFLMdknOZkVhYRpTRmmiV2VwIljHuAtmEOD-Xw6H6VTWFTetq9_pJMkTqptmtw7nvJk6I7_9MyNMS-gzpTnrChovB1SL-ClpS2QJwIArwf9Uq8_YeL9NRgzFfPYuGbHO69jE9v6GvFbrE3dIdvqNPtlhHq89mDm6gv56iM9QHQJzDngrNN6TjscNdKjkezB_8LdXd-M8R7i04Cr24vH6wBp9dZwXpz7NiRH6Cc43ajaji2yI9gO5tnBUG-7HWoAzu3o3Gk5vZ9T05zvQtLIdAFpwiKFuOscB-Ukj4hNL0UrnpJro8Pfnd65OKtoFoKuiMKMsV45Y505GGRtwxJyAnxpGjOqFZbpXmAv6brJa5BoAaUweRLpEmtoBNVMy20HIxLuw2wkJzHgPETLiIYsuozI2BGJVb1-GJ01ELHdbWSx_K6RxpM4fZ2yEFO6TBDulTC-3VBk6rkzpNGRWBEF7JFmrXBm3E7--283_Ld9EXGnzCV8LsoeXZZG730Yp-nN1MJz-CB_8DRgft2g |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VFgk4UB5FLLTgAzfWUtZO_OhtWVFt1WWFaEG9RYkf24qSrfZBxb_qT2TsJA0gONBTDraskWYy88WZ-T6ANzZRVnM3oKVQBU2l41RbY6jRhSul5AUXPopNyOlUnZ7qj81Q2LLtdm9_ScZM3Q27DYQI08QZDfOfGb26A1spVqzAmP_p-MtN_pWslrJF4EA14v9mVObvZ_xejjqM-cdv0VhtDrZvZ-cjeNigSzKsw-ExbLjqCTz4hXPwKVwHic7YH4B5jgQptDCQTuaeDJkS5Hh9GW6pLuY_9snoRqMwLNfXD86So7OiouN1Uc3oBINr1u-WGr0tOkLo3idFZUmgtUZjyPBiNl-cr86-0XeF-YrbMZHFoIjG1jQWJDCFxEdsTa-NW-7A54P3J6MxbWQbqGGSrah2QnPhuLcDZVkiPPcSa2KaeGYyVpROGyHxu8kZVRoEqCnzmOkyZVOH2ESn_BlsVvPKPQcijRApQsxMyCR1nKnSWsxRpfMDkXmT9OBt6738smbnyDse5uCHHP2QRz_kVz3YbR2cN2_qMudMRkF4rXrQbx3aLf_7tBf_t_013BuffJjkk8Pp0Uu4z2J8hK6YXdhcLdZuD-6a76vz5eJVjOafdDHwvg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7xEqIHKBTUAG196K2x2Ni7fnBL00ZUoAgJiritdv0ICNhEyaao_4qfiO3dsFCVQ9XTHmxZI83s-LM9830An3UktKSmg3MmMhxzQ7HUSmElM5NzTjPKbBCb4IOBuLyUp8-6-EO1-_xJsupp8CxNRXkw1vagaXzrMOY7ixPse0ETfL8Iy7EvpPfn9bOLp1zMSSVr60AElu4sULfN_H2Nl1tTgzf_eCINO09_4_9tfgvrNepE3SpMNmHBFFvw5hkX4Tt48NKdoW7A5T_kJdJ8ozoaWdQlgqGz2djfXt2Ofh-i3pN2oR-uriWMRsdXWYGPZlkxxCcu6IbtZqjW4cI9B-nbKCs08nTXzhjUvR2OJtfl1R3-mqkbN90luBAswdiK3gJ5BpHwCSXrlXHTbfjZ_37eO8K1nANWhJMSS8MkZYZa3RGaRMxSy91eGUeWqIRkuZGKcXeeMkrkygHXmFiXAROhY-Mwi4zpDiwVo8K8B8QVY7GDngnjUWwoEbnWLnflxnZYYlXUgi9zT6bjirUjbfiZvR9S54c0-CG9b8H-3Nlp_QdPU0p4EIqXogXtuXOb4ddX2_236Z9g9fRbPz35MTjegzUSwsMXy-zDUjmZmQ-won6V19PJxxDYj0ut-aI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constitutive+Modeling+of+A286+Superalloy%3A+Comparison+of+Improved+Khan-Huang-Liang%2C+Improved+Johnson-Cook%2C+and+Genetic+Algorithm-Backpropagation+Artificial+Neural+Network+Models&rft.jtitle=Journal+of+materials+engineering+and+performance&rft.au=Tao%2C+Liang&rft.au=Feng%2C+Zhiguo&rft.au=Jiang%2C+Yulian&rft.au=Mo%2C+Ningning&rft.date=2025-12-01&rft.pub=Springer+US&rft.issn=1059-9495&rft.eissn=1544-1024&rft.volume=34&rft.issue=23&rft.spage=28170&rft.epage=28182&rft_id=info:doi/10.1007%2Fs11665-025-11425-w&rft.externalDocID=10_1007_s11665_025_11425_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-9495&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-9495&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-9495&client=summon |