Legendre-Fourier spectral approximation and error analysis for nonlinear eigenvalue problems in complex domains
In this paper, we develop and analyze an efficient Legendre-Fourier spectral approximation for solving nonlinear eigenvalue problems in complex domains. The main idea is to employ the domain mapping method to convert the nonlinear eigenvalue problem on a complex domain into an equivalent form on a s...
Uloženo v:
| Vydáno v: | Journal of applied mathematics & computing Ročník 71; číslo 4; s. 5477 - 5504 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1598-5865, 1865-2085 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we develop and analyze an efficient Legendre-Fourier spectral approximation for solving nonlinear eigenvalue problems in complex domains. The main idea is to employ the domain mapping method to convert the nonlinear eigenvalue problem on a complex domain into an equivalent form on a standard circular domain. Based on this, an effective Legendre-Fourier spectral method is implemented by utilizing Legendre polynomials and Fourier series approximations in the radial and tangential directions, respectively. As the initial step, we establish a priori error estimates for standard circular regions. Then, we define a new class of projection operators, demonstrate their approximation properties, and further prove the error estimates for approximating eigenvalues and their corresponding eigenfunctions. Subsequently, by employing region mapping techniques, we extend the algorithm to address nonlinear eigenvalue problems in two-dimensional complex domains, and validate its convergence and spectral accuracy through numerical examples. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1598-5865 1865-2085 |
| DOI: | 10.1007/s12190-025-02444-w |