Legendre-Fourier spectral approximation and error analysis for nonlinear eigenvalue problems in complex domains

In this paper, we develop and analyze an efficient Legendre-Fourier spectral approximation for solving nonlinear eigenvalue problems in complex domains. The main idea is to employ the domain mapping method to convert the nonlinear eigenvalue problem on a complex domain into an equivalent form on a s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of applied mathematics & computing Ročník 71; číslo 4; s. 5477 - 5504
Hlavní autoři: Zheng, Jihui, An, Jing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2025
Springer Nature B.V
Témata:
ISSN:1598-5865, 1865-2085
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we develop and analyze an efficient Legendre-Fourier spectral approximation for solving nonlinear eigenvalue problems in complex domains. The main idea is to employ the domain mapping method to convert the nonlinear eigenvalue problem on a complex domain into an equivalent form on a standard circular domain. Based on this, an effective Legendre-Fourier spectral method is implemented by utilizing Legendre polynomials and Fourier series approximations in the radial and tangential directions, respectively. As the initial step, we establish a priori error estimates for standard circular regions. Then, we define a new class of projection operators, demonstrate their approximation properties, and further prove the error estimates for approximating eigenvalues and their corresponding eigenfunctions. Subsequently, by employing region mapping techniques, we extend the algorithm to address nonlinear eigenvalue problems in two-dimensional complex domains, and validate its convergence and spectral accuracy through numerical examples.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-025-02444-w