Real-time fall detection algorithm based on FFD-AlphaPose and CTR–GCN

With the increasing prevalence of an aging population, falls present a substantial risk to the health of older adults, making fall detection and prevention a primary societal concern. In response to the challenges of inadequate real-time performance and low accuracy in existing methods, this paper p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of real-time image processing Vol. 22; no. 3; p. 109
Main Authors: Yang, Xuecun, Wang, Yixiang, Dong, Zhonghua, Li, Jiayu, Zhang, Qingyun, Qiang, Shushan
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2025
Springer Nature B.V
Subjects:
ISSN:1861-8200, 1861-8219
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the increasing prevalence of an aging population, falls present a substantial risk to the health of older adults, making fall detection and prevention a primary societal concern. In response to the challenges of inadequate real-time performance and low accuracy in existing methods, this paper proposes a lightweight AlphaPose based on FFD-YOLO. Additionally, it incorporates the channel topology refinement graph convolutional network (CTR-GCN) to improve fall detection capabilities. To address the bottlenecks in efficiency and accuracy, this paper first presents an innovative C2fPDR module aimed at enhancing the processing capabilities of long sequence data and expanding the feature receptive field. This approach maintains efficiency while reducing the parameter count, thereby ensuring the stability and accuracy of detection and fully demonstrating the unique advantages of a lightweight design. Furthermore, the neck component has been innovatively restructured by employing a gather-and-distribute (GD) mechanism to optimize the fusion of multi-layer features. Additionally, the integration of MobileNetV4 enhances the backbone network, significantly improving detection speed. The experimental results indicate that the F-FD-YOLO model proposed in this paper reduces the parameter count by 43.0% compared to the original network, increases the frames per second (FPS) by 11.9, achieves a mean average precision (mAP) of 94.3%, and outperforms other classical object detection algorithms that have been adapted for AlphaPose. After embedding AlphaPose, the pose estimation average precision (AP) reaches 74.3%, demonstrating improvements of 0.7, 1.0, and 0.8% compared to the most recent literature (Liang et al., J Supercomput 81:1–20, 2025; Xu et al., Neurocomputing 619:129154, 2025; Miao et al., Adv Neural Inf Process Syst 37:44791–44813, 2025), respectively. The frames per second (FPS) on the GPU reaches 45.8, which is 32.4 FPS faster than OpenPose. When combined with CTR-GCN for action recognition, the precision reaches 98.62%, representing improvements of 8.57, 2.20, and 1.61% over the most recent literature (Cheng et al., Multimed Syst 31:67, 2025; Raza et al., Eng Appl Artif Intell 143:109809, 2025; Yu et al., Pervasive Mob Comput 107:102016, 2025). These experiments validate the substantial advantages of the proposed algorithm for fall detection.
AbstractList With the increasing prevalence of an aging population, falls present a substantial risk to the health of older adults, making fall detection and prevention a primary societal concern. In response to the challenges of inadequate real-time performance and low accuracy in existing methods, this paper proposes a lightweight AlphaPose based on FFD-YOLO. Additionally, it incorporates the channel topology refinement graph convolutional network (CTR-GCN) to improve fall detection capabilities. To address the bottlenecks in efficiency and accuracy, this paper first presents an innovative C2fPDR module aimed at enhancing the processing capabilities of long sequence data and expanding the feature receptive field. This approach maintains efficiency while reducing the parameter count, thereby ensuring the stability and accuracy of detection and fully demonstrating the unique advantages of a lightweight design. Furthermore, the neck component has been innovatively restructured by employing a gather-and-distribute (GD) mechanism to optimize the fusion of multi-layer features. Additionally, the integration of MobileNetV4 enhances the backbone network, significantly improving detection speed. The experimental results indicate that the F-FD-YOLO model proposed in this paper reduces the parameter count by 43.0% compared to the original network, increases the frames per second (FPS) by 11.9, achieves a mean average precision (mAP) of 94.3%, and outperforms other classical object detection algorithms that have been adapted for AlphaPose. After embedding AlphaPose, the pose estimation average precision (AP) reaches 74.3%, demonstrating improvements of 0.7, 1.0, and 0.8% compared to the most recent literature (Liang et al., J Supercomput 81:1–20, 2025; Xu et al., Neurocomputing 619:129154, 2025; Miao et al., Adv Neural Inf Process Syst 37:44791–44813, 2025), respectively. The frames per second (FPS) on the GPU reaches 45.8, which is 32.4 FPS faster than OpenPose. When combined with CTR-GCN for action recognition, the precision reaches 98.62%, representing improvements of 8.57, 2.20, and 1.61% over the most recent literature (Cheng et al., Multimed Syst 31:67, 2025; Raza et al., Eng Appl Artif Intell 143:109809, 2025; Yu et al., Pervasive Mob Comput 107:102016, 2025). These experiments validate the substantial advantages of the proposed algorithm for fall detection.
ArticleNumber 109
Author Li, Jiayu
Zhang, Qingyun
Dong, Zhonghua
Qiang, Shushan
Wang, Yixiang
Yang, Xuecun
Author_xml – sequence: 1
  givenname: Xuecun
  surname: Yang
  fullname: Yang, Xuecun
  email: 421529497@qq.com
  organization: Xi’an University of Science and Technology
– sequence: 2
  givenname: Yixiang
  surname: Wang
  fullname: Wang, Yixiang
  organization: Xi’an University of Science and Technology
– sequence: 3
  givenname: Zhonghua
  surname: Dong
  fullname: Dong, Zhonghua
  organization: Xi’an University of Science and Technology
– sequence: 4
  givenname: Jiayu
  surname: Li
  fullname: Li, Jiayu
  organization: Xi’an University of Science and Technology
– sequence: 5
  givenname: Qingyun
  surname: Zhang
  fullname: Zhang, Qingyun
  organization: Xi’an University of Science and Technology
– sequence: 6
  givenname: Shushan
  surname: Qiang
  fullname: Qiang, Shushan
  organization: Xi’an University of Science and Technology
BookMark eNp9kM9Kw0AQhxdRsK2-gKeA59X9m02OpdoqFJVSz8s0O21T0qTuplBvvoNv6JO4GtGbpxmG3zczfH1yXDc1EnLB2RVnzFwHzrVWlAlNGU8zQw9HpMezlNNM8Pz4t2fslPRD2DCWmlTqHpnMECralltMllBVicMWi7Zs6gSqVePLdr1NFhDQJXE0Ht_QYbVbw1MTMIHaJaP57OPtfTJ6OCMnkQ94_lMH5Hl8Ox_d0enj5H40nNJCGNHS-AWIZWakRsFQOp2muZLOgAPlFgZyxRUseKadAwMqd8idFoVCnqfAkMsBuez27nzzssfQ2k2z93U8aaVgMs-U0TKmRJcqfBOCx6Xd-XIL_tVyZr-E2U6YjcLstzB7iJDsoBDD9Qr93-p_qE-Z129x
Cites_doi 10.1038/nature19793
10.1109/ICESIT53460.2021.9696459
10.1016/j.neucom.2017.02.082
10.1007/s12652-019-01214-4
10.1016/j.engappai.2024.109809
10.1109/CVPR42600.2020.01079
10.3390/app11010329
10.1016/j.asoc.2014.12.035
10.1007/s11227-025-06923-6
10.3390/s17122864
10.55730/1300-0632.4087
10.1016/j.neucom.2024.129154
10.3390/s18041101
10.1109/JBHI.2014.2319372
10.1155/2020/9532067
10.1109/IWAIT.2018.8369696
10.1109/CVPR42600.2020.00712
10.1007/s00530-024-01665-6
10.1109/CVPR46437.2021.01493
10.1609/aaai.v36i3.20155
10.1109/RTEICT.2017.8256804
10.3390/sym12050744
10.1109/WACV.2017.27
10.55730/1300-0632.4078
10.1109/JSEN.2019.2918690
10.1007/s41095-020-0183-7
10.1155/2022/9962666
10.1109/ICCV.2017.256
10.1109/ICCV48922.2021.01311
10.1109/ICCV48922.2021.01162
10.1109/DDHH.2006.1624792
10.1109/BigDIA51454.2020.00069
10.1109/TBME.2012.2228262
10.1007/978-3-031-20068-7_7
10.1109/ACCESS.2020.2999503
10.1016/j.pmcj.2025.102016
10.1007/s11042-015-2698-y
10.1109/CVPR46437.2021.01306
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11554-025-01687-x
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1861-8219
ExternalDocumentID 10_1007_s11554_025_01687_x
GrantInformation_xml – fundername: National Natural Science Foundation of China, China
  grantid: 51804250
GroupedDBID .VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-Y2
2VQ
AARHV
AAYTO
AAYXX
ABQSL
ABRTQ
ABULA
ACBXY
ADHKG
AEBTG
AEKMD
AFFHD
AFGCZ
AFKRA
AGJBK
AGQPQ
AHSBF
AJBLW
ARAPS
BDATZ
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
EJD
FINBP
FSGXE
H13
HCIFZ
HZ~
IHE
K7-
N2Q
O9-
PHGZM
PHGZT
PQGLB
JQ2
ID FETCH-LOGICAL-c272t-861a2f8735e20e3d566943d7ada4db7a9414ab185dda7a49de1d52c4e196a0e13
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001488251100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-8200
IngestDate Wed Nov 05 06:50:53 EST 2025
Sat Nov 29 07:52:14 EST 2025
Wed Jul 02 02:43:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords FFD-YOLO
AlphaPose
C2fPDR
Fall detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-861a2f8735e20e3d566943d7ada4db7a9414ab185dda7a49de1d52c4e196a0e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3203984753
PQPubID 2044148
ParticipantIDs proquest_journals_3203984753
crossref_primary_10_1007_s11554_025_01687_x
springer_journals_10_1007_s11554_025_01687_x
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of real-time image processing
PublicationTitleAbbrev J Real-Time Image Proc
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References 1687_CR44
1687_CR45
1687_CR43
X Cheng (1687_CR48) 2025; 31
C Rougier (1687_CR20) 2011; 21
I Abderrazak (1687_CR25) 2020; 6
A Raza (1687_CR49) 2025; 143
S Ashinikumar Singh (1687_CR29) 2024; 32
1687_CR7
1687_CR31
1687_CR32
1687_CR37
1687_CR38
1687_CR35
1687_CR36
X Yu (1687_CR50) 2025; 107
1687_CR30
Z Xu (1687_CR41) 2025; 619
Z Yan (1687_CR18) 2021; 47
J Lee (1687_CR2) 2019; 19
A Goyal (1687_CR34) 2022; 35
S Wang (1687_CR19) 2016; 75
1687_CR39
O Kerdjidj (1687_CR4) 2020; 11
K De Miguel (1687_CR14) 2017; 17
A Sucerquia (1687_CR5) 2018; 18
1687_CR21
1687_CR26
1687_CR27
C Jianrong (1687_CR8) 2021; 41
H Zheng (1687_CR46) 2022; 2022
B Miao (1687_CR42) 2025; 37
X Xi (1687_CR3) 2020; 2020
1687_CR11
1687_CR12
B Mirmahboub (1687_CR22) 2012; 60
S Jiao (1687_CR47) 2024; 10
1687_CR10
1687_CR16
1687_CR13
CB Lin (1687_CR15) 2020; 11
Z-P Bian (1687_CR24) 2014; 19
X Dong (1687_CR1) 2016; 538
W Chen (1687_CR9) 2020; 12
İ Erdogan (1687_CR28) 2024; 32
Y Han (1687_CR33) 2022; 61
M Aslan (1687_CR23) 2015; 37
Y Fan (1687_CR6) 2017; 260
G Xin (1687_CR17) 2020; 20
H Liang (1687_CR40) 2025; 81
References_xml – volume: 538
  start-page: 257
  year: 2016
  ident: 1687_CR1
  publication-title: Nature
  doi: 10.1038/nature19793
– ident: 1687_CR27
  doi: 10.1109/ICESIT53460.2021.9696459
– volume: 260
  start-page: 43
  year: 2017
  ident: 1687_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.082
– volume: 47
  start-page: 56
  year: 2021
  ident: 1687_CR18
  publication-title: Opt. Tech.
– volume: 11
  start-page: 349
  year: 2020
  ident: 1687_CR4
  publication-title: J. Ambient Intell. Human. Comput.
  doi: 10.1007/s12652-019-01214-4
– volume: 20
  start-page: 12500
  year: 2020
  ident: 1687_CR17
  publication-title: Sci. Technol. Eng.
– volume: 143
  year: 2025
  ident: 1687_CR49
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.109809
– ident: 1687_CR35
  doi: 10.1109/CVPR42600.2020.01079
– volume: 11
  start-page: 329
  year: 2020
  ident: 1687_CR15
  publication-title: Appl. Sci.
  doi: 10.3390/app11010329
– volume: 37
  start-page: 1023
  year: 2015
  ident: 1687_CR23
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.12.035
– volume: 21
  start-page: 611
  year: 2011
  ident: 1687_CR20
  publication-title: Multimed. Tools Appl.
– volume: 81
  start-page: 1
  year: 2025
  ident: 1687_CR40
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-025-06923-6
– volume: 17
  start-page: 2864
  year: 2017
  ident: 1687_CR14
  publication-title: Sensors
  doi: 10.3390/s17122864
– ident: 1687_CR38
– volume: 32
  start-page: 555
  year: 2024
  ident: 1687_CR29
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.55730/1300-0632.4087
– volume: 619
  year: 2025
  ident: 1687_CR41
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.129154
– volume: 18
  start-page: 1101
  year: 2018
  ident: 1687_CR5
  publication-title: Sensors
  doi: 10.3390/s18041101
– volume: 19
  start-page: 430
  year: 2014
  ident: 1687_CR24
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2014.2319372
– volume: 2020
  start-page: 9532067
  year: 2020
  ident: 1687_CR3
  publication-title: Complexity
  doi: 10.1155/2020/9532067
– ident: 1687_CR44
  doi: 10.1109/IWAIT.2018.8369696
– ident: 1687_CR12
  doi: 10.1109/CVPR42600.2020.00712
– volume: 31
  start-page: 67
  year: 2025
  ident: 1687_CR48
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-024-01665-6
– ident: 1687_CR16
  doi: 10.1109/CVPR46437.2021.01493
– ident: 1687_CR11
  doi: 10.1609/aaai.v36i3.20155
– volume: 10
  year: 2024
  ident: 1687_CR47
  publication-title: Math. Probl. Eng.
– ident: 1687_CR31
– volume: 37
  start-page: 44791
  year: 2025
  ident: 1687_CR42
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 1687_CR43
  doi: 10.1109/RTEICT.2017.8256804
– volume: 12
  start-page: 744
  year: 2020
  ident: 1687_CR9
  publication-title: Symmetry
  doi: 10.3390/sym12050744
– ident: 1687_CR13
  doi: 10.1109/WACV.2017.27
– ident: 1687_CR39
– volume: 32
  start-page: 420
  issue: 3
  year: 2024
  ident: 1687_CR28
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.55730/1300-0632.4078
– volume: 19
  start-page: 8293
  issue: 18
  year: 2019
  ident: 1687_CR2
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2019.2918690
– volume: 41
  start-page: 583
  year: 2021
  ident: 1687_CR8
  publication-title: Appl. Comput. Sci.
– volume: 6
  start-page: 247
  year: 2020
  ident: 1687_CR25
  publication-title: Comput. Visual Media
  doi: 10.1007/s41095-020-0183-7
– volume: 35
  start-page: 6789
  year: 2022
  ident: 1687_CR34
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 2022
  start-page: 9962666
  year: 2022
  ident: 1687_CR46
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2022/9962666
– ident: 1687_CR32
– ident: 1687_CR7
  doi: 10.1109/ICCV.2017.256
– ident: 1687_CR30
  doi: 10.1109/ICCV48922.2021.01311
– volume: 61
  start-page: 1
  year: 2022
  ident: 1687_CR33
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: 1687_CR10
  doi: 10.1109/ICCV48922.2021.01162
– ident: 1687_CR21
  doi: 10.1109/DDHH.2006.1624792
– ident: 1687_CR26
  doi: 10.1109/BigDIA51454.2020.00069
– volume: 60
  start-page: 427
  year: 2012
  ident: 1687_CR22
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2228262
– ident: 1687_CR37
  doi: 10.1007/978-3-031-20068-7_7
– ident: 1687_CR45
  doi: 10.1109/ACCESS.2020.2999503
– volume: 107
  year: 2025
  ident: 1687_CR50
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2025.102016
– volume: 75
  start-page: 11603
  year: 2016
  ident: 1687_CR19
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-015-2698-y
– ident: 1687_CR36
  doi: 10.1109/CVPR46437.2021.01306
SSID ssj0067635
Score 2.344355
Snippet With the increasing prevalence of an aging population, falls present a substantial risk to the health of older adults, making fall detection and prevention a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 109
SubjectTerms Accuracy
Adaptability
Algorithms
Artificial neural networks
Computer Graphics
Computer Science
Fall detection
False alarms
Frames per second
Human body
Image Processing and Computer Vision
Methods
Multilayers
Multimedia Information Systems
Neural networks
Object recognition
Older people
Parameters
Pattern Recognition
Pose estimation
Real time
Signal,Image and Speech Processing
Single persons
Topology
Title Real-time fall detection algorithm based on FFD-AlphaPose and CTR–GCN
URI https://link.springer.com/article/10.1007/s11554-025-01687-x
https://www.proquest.com/docview/3203984753
Volume 22
WOSCitedRecordID wos001488251100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: RSV
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA4yPXhxfuJ0Sg7eNNAm6ZIcx7TzIGPMKbuVrElVmJ2sVTz6H_yH_hLfdC1F0YOeCm15W57mzfM0yZsHoRMZs8QZFRGjNSMcNDKRlCnS0VYkzFNC26JQ-EoMBnIyUcOyKCyrVrtXU5JFT10XuznqI85-FWQKpAYox1WgO-kMG0bXt1X_23FbrLnfLNnx4bmeV5bK_BzjKx3VGvPbtGjBNmHzf--5iTZKdYm7y-awhVZsuo2alXMDLhN5B_VHoA-J85XHiZ7NsLF5sSQrxXp2N1885PeP2PGbwXAqDM9J15XkDueZxTo1uDcefby993uDXXQTXox7l6S0VCAxFTQngImmiRQssNSzzICYU5wZoY3mZiq04j7XU-BwY7TQXBnrm4DG3EKias_6bA810nlq9xGWggaWx1Nn3AEHXyVCKREYxg1lELqFTitko6flzhlRvUeywygCjKICo-i1hdoV-FGZRVnEqMcU0GfAWuisAru-_Hu0g7_dfojWafG93OBKGzXyxbM9QmvxS_6QLY6L1vUJ69DJlQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA4yBb04P3E6NQdvGmiTdGmOY9pNnGXMKbuFrEl1MDtZq3j0P_gP_SUmXctQ9KCnQlvS8jRvnqdJ3vcB4MSPSGyNipCSkiBqNDLyMeGoITWLicOZ1HmicJeFoT8c8l6RFJaWu93LJcl8pF4ku1nqQ9Z-1cgUExpGOS5Tw1i2Yn7_5q4cfxu2xJr9zfIbrnmu4xSpMj-38ZWOFhrz27JozjZB9X_vuQHWC3UJm_PusAmWdLIFqqVzAywCeRu0-0YfIusrD2M5mUCls3xLVgLl5H46G2cPj9Dym4LmVBCco6ZNye1NUw1lomBr0P94e2-3wh1wG1wMWh1UWCqgCDOcIYOJxLHPiKexo4kyYo5TophUkqoRk5y6VI4MhyslmaRcaVd5OKLaBKp0tEt2QSWZJnoPQJ9hT9NoZI07zMHlMeOceYpQhYlpugZOS2TF07xyhljUSLYYCYORyDESrzVQL8EXRRSlgmCHcEOfHqmBsxLsxeXfW9v_2-3HYLUzuO6K7mV4dQDWcP7t7ERLHVSy2bM-BCvRSzZOZ0d5T_sEaOPMeQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6iIl6cP3E6NQdvGtYm6dIcx2anOMaYU3YLWZPqYHZjq-LR_8H_0L_EpGupih7EU6Etj_CS1-9L8773ADj1QxLZRkVISUkQNRwZ-ZhwVJOaRcThTOpUKNxmnY4_GPDuJxV_mu2eH0kuNA22SlOcVKcqqhbCNwuDyLZiNZTFhIlhkSvUJtLb_frNXf4trtlya3bL5ddcMwbHyWQzP9v4Ck0F3_x2RJoiT1D6_5g3wUbGOmF9sUy2wJKOt0Ep7-gAswDfAa2e4Y3I9puHkRyPodJJmqoVQzm-n8xGycMjtLinoLkVBE1Ut1Ld7mSuoYwVbPR7769vrUZnF9wGF_3GJcpaLaAQM5wg4x-JI58RT2NHE2VIHqdEMakkVUMmOXWpHBpsV0oySbnSrvJwSLUJYOlol-yB5XgS630AfYY9TcOhbehhLi6PGOfMU4QqTIzpMjjLvSymi4oaoqidbH0kjI9E6iPxUgaVfCJEFl1zQbBDuIFVj5TBee744vHv1g7-9voJWOs2A9G-6lwfgnWcTp39_1IBy8nsSR-B1fA5Gc1nx-mi-wDDe9Vd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+fall+detection+algorithm+based+on+FFD-AlphaPose+and+CTR%E2%80%93GCN&rft.jtitle=Journal+of+real-time+image+processing&rft.au=Yang%2C+Xuecun&rft.au=Wang%2C+Yixiang&rft.au=Dong%2C+Zhonghua&rft.au=Li%2C+Jiayu&rft.date=2025-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=22&rft.issue=3&rft_id=info:doi/10.1007%2Fs11554-025-01687-x&rft.externalDocID=10_1007_s11554_025_01687_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon