Fast constructive heuristics for the uncapacitated inventory routing problem

The inventory routing problem (IRP) poses a significant optimization challenge across various industries. This paper focuses on the uncapacitated IRP, by introducing fast constructive heuristics integrating insights from approximation algorithms, particularly rounding techniques in linear programmin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of heuristics Ročník 31; číslo 2; s. 23
Hlavní autoři: Alarcón, Miguel Ángel Marfurt, Pedrosa, Lehilton Lelis Chaves, Usberti, Fábio Luiz
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2025
Springer Nature B.V
Témata:
ISSN:1381-1231, 1572-9397
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The inventory routing problem (IRP) poses a significant optimization challenge across various industries. This paper focuses on the uncapacitated IRP, by introducing fast constructive heuristics integrating insights from approximation algorithms, particularly rounding techniques in linear programming (LP). The proposed heuristics efficiently deliver effective solutions, providing advantages over methods such as branch-and-cut and metaheuristics. Methodologically, we emphasize scalability, subjecting our algorithms to rigorous stress tests with larger instances. Computational experiments, utilizing 420 instances, demonstrate the effectiveness and scalability of our heuristics, notably those tailored to specific problem variants, achieving an average gap of 2.2%. Our work underscores the effectiveness of leveraging approximation algorithms for the uncapacitated IRP, with future directions aimed at enhancing heuristics for broader real-world applicability, including the capacitated version of the IRP.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1381-1231
1572-9397
DOI:10.1007/s10732-025-09558-1