On sequential greedy-type bases On sequential greedy-type bases

It is known that a basis is almost greedy if and only if the thresholding greedy algorithm gives essentially the smallest error term compared to errors from projections onto intervals or in other words, consecutive terms of N . In this paper, we fix a sequence ( a n ) n = 1 ∞ and compare the TGA aga...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annals of functional analysis Ročník 16; číslo 3; s. 36
Hlavní autoři: Berasategui, Miguel, Berná, Pablo M., Chu, Hùng Việt
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.07.2025
Nature Publishing Group
Témata:
ISSN:2639-7390, 2008-8752, 2008-8752
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It is known that a basis is almost greedy if and only if the thresholding greedy algorithm gives essentially the smallest error term compared to errors from projections onto intervals or in other words, consecutive terms of N . In this paper, we fix a sequence ( a n ) n = 1 ∞ and compare the TGA against projections onto consecutive terms of the sequence and its shifts. We call the corresponding greedy-type condition the F ( a n ) -almost greedy property. Our first result shows that the F ( a n ) -almost greedy property is equivalent to the classical almost greedy property if and only if ( a n ) n = 1 ∞ is bounded. Then we establish an analog of the result for the strong partially greedy property. Finally, we show that under a certain projection rule and conditions on the sequence ( a n ) n = 1 ∞ , we obtain a greedy-type condition that lies strictly between the almost greedy and strong partially greedy properties.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2639-7390
2008-8752
2008-8752
DOI:10.1007/s43034-025-00435-3