Graphs whose spectral radius is bounded by a fixed Hoffman–Smith limit point

For an integer p ≥ 3 , we study graphs whose adjacency spectral radius satisfies ρ ( G ) < p p - 1 = A p or whose signless Laplacian spectral radius satisfies κ ( G ) < p 2 p - 1 = Q p . The numbers A p and Q p are known as Hoffman–Smith limit points. For general p , we find upper bounds on th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of algebraic combinatorics Ročník 62; číslo 2; s. 25
Hlavní autoři: Borba, Elizandro Max, Calegari, Rafael, Hoppen, Carlos, Trevisan, Vilmar, Veloso, Bruno Scaratti
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.09.2025
Springer Nature B.V
Témata:
ISSN:0925-9899, 1572-9192
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.