Graphs whose spectral radius is bounded by a fixed Hoffman–Smith limit point
For an integer p ≥ 3 , we study graphs whose adjacency spectral radius satisfies ρ ( G ) < p p - 1 = A p or whose signless Laplacian spectral radius satisfies κ ( G ) < p 2 p - 1 = Q p . The numbers A p and Q p are known as Hoffman–Smith limit points. For general p , we find upper bounds on th...
Gespeichert in:
| Veröffentlicht in: | Journal of algebraic combinatorics Jg. 62; H. 2; S. 25 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.09.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0925-9899, 1572-9192 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | For an integer
p
≥
3
, we study graphs whose adjacency spectral radius satisfies
ρ
(
G
)
<
p
p
-
1
=
A
p
or whose signless Laplacian spectral radius satisfies
κ
(
G
)
<
p
2
p
-
1
=
Q
p
. The numbers
A
p
and
Q
p
are known as Hoffman–Smith limit points. For general
p
, we find upper bounds on the maximum degree of such graphs
G
and describe the graphs for which the upper bound is achieved with respect to the adjacency matrix. Moreover, we describe forbidden substructures for graphs in these classes. For
p
=
4
, we show that the structure of graphs
G
such that
A
3
<
ρ
(
G
)
<
A
4
or
Q
3
<
κ
(
G
)
<
Q
4
is much richer than the structure of graphs for which
ρ
(
G
)
<
A
3
or
κ
(
G
)
<
Q
3
, whose study has been initiated by Woo and Neumaier (Graphs Combin 23:713–726, 2007). |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0925-9899 1572-9192 |
| DOI: | 10.1007/s10801-025-01458-8 |