Graphs whose spectral radius is bounded by a fixed Hoffman–Smith limit point

For an integer p ≥ 3 , we study graphs whose adjacency spectral radius satisfies ρ ( G ) < p p - 1 = A p or whose signless Laplacian spectral radius satisfies κ ( G ) < p 2 p - 1 = Q p . The numbers A p and Q p are known as Hoffman–Smith limit points. For general p , we find upper bounds on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics Jg. 62; H. 2; S. 25
Hauptverfasser: Borba, Elizandro Max, Calegari, Rafael, Hoppen, Carlos, Trevisan, Vilmar, Veloso, Bruno Scaratti
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2025
Springer Nature B.V
Schlagworte:
ISSN:0925-9899, 1572-9192
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For an integer p ≥ 3 , we study graphs whose adjacency spectral radius satisfies ρ ( G ) < p p - 1 = A p or whose signless Laplacian spectral radius satisfies κ ( G ) < p 2 p - 1 = Q p . The numbers A p and Q p are known as Hoffman–Smith limit points. For general p , we find upper bounds on the maximum degree of such graphs G and describe the graphs for which the upper bound is achieved with respect to the adjacency matrix. Moreover, we describe forbidden substructures for graphs in these classes. For p = 4 , we show that the structure of graphs G such that A 3 < ρ ( G ) < A 4 or Q 3 < κ ( G ) < Q 4 is much richer than the structure of graphs for which ρ ( G ) < A 3 or κ ( G ) < Q 3 , whose study has been initiated by Woo and Neumaier (Graphs Combin 23:713–726, 2007).
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-9899
1572-9192
DOI:10.1007/s10801-025-01458-8