Optimality Conditions at Infinity for Nonsmooth Minimax Programming Problems with Some Applications

This paper is devoted to the study of optimality conditions at infinity in nonsmooth minimax programming problems and their applications. By means of the limiting subdifferential and the normal cone at infinity, we derive necessary and sufficient optimality conditions of the Karush–Kuhn–Tucker type...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications Jg. 205; H. 2; S. 32
Hauptverfasser: Van Tuyen, Nguyen, Bae, Kwan Deok, Kim, Do Sang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.05.2025
Springer Nature B.V
Schlagworte:
ISSN:0022-3239, 1573-2878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to the study of optimality conditions at infinity in nonsmooth minimax programming problems and their applications. By means of the limiting subdifferential and the normal cone at infinity, we derive necessary and sufficient optimality conditions of the Karush–Kuhn–Tucker type for nonsmooth minimax programming problems with constraints. The obtained results are applied to nonsmooth vector optimization problems and robust minimax optimization ones.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-025-02652-1