Optimality Conditions at Infinity for Nonsmooth Minimax Programming Problems with Some Applications

This paper is devoted to the study of optimality conditions at infinity in nonsmooth minimax programming problems and their applications. By means of the limiting subdifferential and the normal cone at infinity, we derive necessary and sufficient optimality conditions of the Karush–Kuhn–Tucker type...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of optimization theory and applications Ročník 205; číslo 2; s. 32
Hlavní autori: Van Tuyen, Nguyen, Bae, Kwan Deok, Kim, Do Sang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.05.2025
Springer Nature B.V
Predmet:
ISSN:0022-3239, 1573-2878
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper is devoted to the study of optimality conditions at infinity in nonsmooth minimax programming problems and their applications. By means of the limiting subdifferential and the normal cone at infinity, we derive necessary and sufficient optimality conditions of the Karush–Kuhn–Tucker type for nonsmooth minimax programming problems with constraints. The obtained results are applied to nonsmooth vector optimization problems and robust minimax optimization ones.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-025-02652-1