Stability and Numerical Analysis of Micropolar Viscoelastic Systems

In this work, we consider two dynamic systems arising in micropolar viscoelasticity. In this sense, the material structure is assumed to have macroscopic and microscopic levels. First, an existence and uniqueness result is proved by using the theory of linear semigroups and, secondly, the decay of t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of elasticity Ročník 157; číslo 4; s. 83
Hlavní autori: Bazarra, Noelia, Fernández, José R., Fernández Sare, Hugo D., Quintanilla, Ramón
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.11.2025
Springer Nature B.V
Predmet:
ISSN:0374-3535, 1573-2681
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this work, we consider two dynamic systems arising in micropolar viscoelasticity. In this sense, the material structure is assumed to have macroscopic and microscopic levels. First, an existence and uniqueness result is proved by using the theory of linear semigroups and, secondly, the decay of the solutions to the equilibrium state is shown. Then, the polynomial energy decay is obtained applying a characterization of the system operator. In a second part, we consider the numerical approximation of a variational version of the above problem. This is done by using the finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. A discrete stability property is proved and an a priori error analysis is provided. The linear convergence of the approximations is deduced under some additional regularity conditions on the continuous solution. Finally, some numerical simulations are shown to demonstrate numerical convergence and the behavior of the discrete energy.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0374-3535
1573-2681
DOI:10.1007/s10659-025-10178-w