Optimal polynomial smoothers for parallel AMG

In this paper, we explore polynomial accelerators that are well-suited for parallel computations, specifically as smoothers in Algebraic MultiGrid (AMG) preconditioners for symmetric positive definite matrices. These accelerators address a minimax problem, initially formulated in Lottes (Numer. Lin....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 100; číslo 4; s. 1783 - 1812
Hlavní autoři: D’Ambra, Pasqua, Durastante, Fabio, Filippone, Salvatore, Massei, Stefano, Thomas, Stephen
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2025
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we explore polynomial accelerators that are well-suited for parallel computations, specifically as smoothers in Algebraic MultiGrid (AMG) preconditioners for symmetric positive definite matrices. These accelerators address a minimax problem, initially formulated in Lottes (Numer. Lin. Alg. with Appl. 30 (6), e2518 2023 ), aiming to achieve an optimal (or near-optimal) bound for a polynomial-dependent constant involved in the AMG V-cycle error bound, without requiring information about the matrices’ spectra. Lottes focuses on Chebyshev polynomials of the 4 th -kind and defines the relevant recurrence formulas applicable to a general convergent basic smoother. In this paper, we demonstrate the efficacy of these accelerations for large-scale applications on modern GPU-accelerated supercomputers. Furthermore, we formulate a variant of the aforementioned minimax problem, which naturally leads to solutions relying on Chebyshev polynomials of the 1 st -kind as accelerators for a basic smoother. For all the polynomial accelerations, we describe efficient GPU kernels for their application and demonstrate their comparable effectiveness on standard benchmarks at very large scales.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-025-02117-6