Optimal polynomial smoothers for parallel AMG
In this paper, we explore polynomial accelerators that are well-suited for parallel computations, specifically as smoothers in Algebraic MultiGrid (AMG) preconditioners for symmetric positive definite matrices. These accelerators address a minimax problem, initially formulated in Lottes (Numer. Lin....
Gespeichert in:
| Veröffentlicht in: | Numerical algorithms Jg. 100; H. 4; S. 1783 - 1812 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.12.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1017-1398, 1572-9265 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we explore polynomial accelerators that are well-suited for parallel computations, specifically as smoothers in Algebraic MultiGrid (AMG) preconditioners for symmetric positive definite matrices. These accelerators address a minimax problem, initially formulated in Lottes (Numer. Lin. Alg. with Appl.
30
(6), e2518
2023
), aiming to achieve an optimal (or near-optimal) bound for a polynomial-dependent constant involved in the AMG V-cycle error bound, without requiring information about the matrices’ spectra. Lottes focuses on Chebyshev polynomials of the 4
th
-kind and defines the relevant recurrence formulas applicable to a general convergent basic smoother. In this paper, we demonstrate the efficacy of these accelerations for large-scale applications on modern GPU-accelerated supercomputers. Furthermore, we formulate a variant of the aforementioned minimax problem, which naturally leads to solutions relying on Chebyshev polynomials of the 1
st
-kind as accelerators for a basic smoother. For all the polynomial accelerations, we describe efficient GPU kernels for their application and demonstrate their comparable effectiveness on standard benchmarks at very large scales. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-025-02117-6 |