Callan permutations and odd order permutations
We call a permutation to be of odd order if writing in cycle form consisting of only odd cycles, and call a permutation to be a Callan permutation if all its left-to-right minima appear at odd positions. This paper aims to provide five elementary proofs that Callan permutations and odd order permuta...
Uloženo v:
| Vydáno v: | Graphs and combinatorics Ročník 41; číslo 6; s. 124 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Tokyo
Springer Japan
01.12.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0911-0119, 1435-5914 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We call a permutation to be of odd order if writing in cycle form consisting of only odd cycles, and call a permutation to be a Callan permutation if all its left-to-right minima appear at odd positions. This paper aims to provide five elementary proofs that Callan permutations and odd order permutations have the same cardinality: one by generating functions, two by recursions and another two by combinatorial bijections. The last bijection gives rise to a refinement of this equality. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0911-0119 1435-5914 |
| DOI: | 10.1007/s00373-025-02984-9 |