Callan permutations and odd order permutations

We call a permutation to be of odd order if writing in cycle form consisting of only odd cycles, and call a permutation to be a Callan permutation if all its left-to-right minima appear at odd positions. This paper aims to provide five elementary proofs that Callan permutations and odd order permuta...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Graphs and combinatorics Ročník 41; číslo 6; s. 124
Hlavní autori: Du, Rosena R. X., Lin, Zhicong, Wang, David G. L., Zhao, Tongyuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Tokyo Springer Japan 01.12.2025
Springer Nature B.V
Predmet:
ISSN:0911-0119, 1435-5914
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We call a permutation to be of odd order if writing in cycle form consisting of only odd cycles, and call a permutation to be a Callan permutation if all its left-to-right minima appear at odd positions. This paper aims to provide five elementary proofs that Callan permutations and odd order permutations have the same cardinality: one by generating functions, two by recursions and another two by combinatorial bijections. The last bijection gives rise to a refinement of this equality.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-025-02984-9