A Simplistic Method for Assessing Seismic Damage in Rock Tunnels Before Earthquake: Part 2—Application of Simplistic Method by a Python-Based GUI Tool for India and Adjacent Countries

The first part of this paper outlines a simple method for assessing seismic damage to rock tunnels prior to an earthquake, based on the Seismic Damage Classification of Tunnels (SDCT), proposed by Reddy and Singh (2024) [‘A Simplistic Method for Assessing Seismic Damage in Rock Tunnels Before Earthq...

Full description

Saved in:
Bibliographic Details
Published in:Rock mechanics and rock engineering Vol. 58; no. 6; pp. 7149 - 7170
Main Authors: Reddy, A. Dinesh, Singh, Aditya
Format: Journal Article
Language:English
Published: Vienna Springer Vienna 01.06.2025
Springer Nature B.V
Subjects:
ISSN:0723-2632, 1434-453X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The first part of this paper outlines a simple method for assessing seismic damage to rock tunnels prior to an earthquake, based on the Seismic Damage Classification of Tunnels (SDCT), proposed by Reddy and Singh (2024) [‘A Simplistic Method for Assessing Seismic Damage in Rock Tunnels Before Earthquake: Part 1—Damage Prediction and Validation Using Seismic Damage Classification of Tunnels’, Rock Mechanics and Rock Engineering, pp. 1-32]. However, to implement the proposed methodology in the field, the data on seismic sources within 250 km are necessary. Seismic sources within this range should be mapped in Google Earth Pro to obtain source-to-site distances, which are then used to calculate PGA values. After gathering all inputs, the engineer needs to check critical parameter combinations to determine damage class and predict damages before an earthquake. Though the method is simple, the process is time-intensive, requiring precision at each step. This study simplifies the process and develops a software implementation of the proposed methodology. This software is an outcome of a Python-based GUI tool developed for India and adjacent countries. To develop this tool, the seismic sources are collected and mapped in QGIS to create a database of 4602 faults across India and adjacent countries. The written Python code identifies the sources within 250 km of the tunnel site and also calculates the PGA from each source through empirical attenuation relationships. This GUI tool evaluates the Seismic Vulnerability of Rock Tunnels (SVRT) using input parameters, such as latitude, longitude, Rock Mass Rating, Overburden, lining type, and tunnel shape. Using the obtained PGA values for seismic sources within 250 km and by critically combining the entered input parameters, the tool predicts the damage class and probable damages for any location within the study region. The reports are generated in .txt (notepad) format and graphs for the distribution of total faults in each damage class are provided for the user’s location. The validation of this tool is done by performing SVRT of the Daliang tunnel site. The results of the software and actual damages of the Daliang tunnel due to the Menyuan earthquake (2022/Mw 6.6) in Qinghai, China are compared. The tool showed a good agreement with the proposed software. The software’s user-friendly interface makes it easy to input data and quickly obtain results. Highlights For the first time, a simple method is proposed for predicting and assessing the seismic damages to the rock tunnels before an earthquake using the Seismic Damage Classification of Tunnels. Employing the methodology, this study proposes a software, which is a Python-based GUI tool that can perform the Seismic Vulnerability of Rock Tunnels (SVRT) before an earthquake in India and adjacent Countries. Utilizing this tool, engineers can perform the SVRT for tunnel sites by generating reports and graphs before an earthquake. The proposed software is simple to use and delivers quicker results through obtained reports, as it can be used by engineers for preliminary seismic investigations.
AbstractList The first part of this paper outlines a simple method for assessing seismic damage to rock tunnels prior to an earthquake, based on the Seismic Damage Classification of Tunnels (SDCT), proposed by Reddy and Singh (2024) [‘A Simplistic Method for Assessing Seismic Damage in Rock Tunnels Before Earthquake: Part 1—Damage Prediction and Validation Using Seismic Damage Classification of Tunnels’, Rock Mechanics and Rock Engineering, pp. 1-32]. However, to implement the proposed methodology in the field, the data on seismic sources within 250 km are necessary. Seismic sources within this range should be mapped in Google Earth Pro to obtain source-to-site distances, which are then used to calculate PGA values. After gathering all inputs, the engineer needs to check critical parameter combinations to determine damage class and predict damages before an earthquake. Though the method is simple, the process is time-intensive, requiring precision at each step. This study simplifies the process and develops a software implementation of the proposed methodology. This software is an outcome of a Python-based GUI tool developed for India and adjacent countries. To develop this tool, the seismic sources are collected and mapped in QGIS to create a database of 4602 faults across India and adjacent countries. The written Python code identifies the sources within 250 km of the tunnel site and also calculates the PGA from each source through empirical attenuation relationships. This GUI tool evaluates the Seismic Vulnerability of Rock Tunnels (SVRT) using input parameters, such as latitude, longitude, Rock Mass Rating, Overburden, lining type, and tunnel shape. Using the obtained PGA values for seismic sources within 250 km and by critically combining the entered input parameters, the tool predicts the damage class and probable damages for any location within the study region. The reports are generated in .txt (notepad) format and graphs for the distribution of total faults in each damage class are provided for the user’s location. The validation of this tool is done by performing SVRT of the Daliang tunnel site. The results of the software and actual damages of the Daliang tunnel due to the Menyuan earthquake (2022/Mw 6.6) in Qinghai, China are compared. The tool showed a good agreement with the proposed software. The software’s user-friendly interface makes it easy to input data and quickly obtain results. Highlights For the first time, a simple method is proposed for predicting and assessing the seismic damages to the rock tunnels before an earthquake using the Seismic Damage Classification of Tunnels. Employing the methodology, this study proposes a software, which is a Python-based GUI tool that can perform the Seismic Vulnerability of Rock Tunnels (SVRT) before an earthquake in India and adjacent Countries. Utilizing this tool, engineers can perform the SVRT for tunnel sites by generating reports and graphs before an earthquake. The proposed software is simple to use and delivers quicker results through obtained reports, as it can be used by engineers for preliminary seismic investigations.
The first part of this paper outlines a simple method for assessing seismic damage to rock tunnels prior to an earthquake, based on the Seismic Damage Classification of Tunnels (SDCT), proposed by Reddy and Singh (2024) [‘A Simplistic Method for Assessing Seismic Damage in Rock Tunnels Before Earthquake: Part 1—Damage Prediction and Validation Using Seismic Damage Classification of Tunnels’, Rock Mechanics and Rock Engineering, pp. 1-32]. However, to implement the proposed methodology in the field, the data on seismic sources within 250 km are necessary. Seismic sources within this range should be mapped in Google Earth Pro to obtain source-to-site distances, which are then used to calculate PGA values. After gathering all inputs, the engineer needs to check critical parameter combinations to determine damage class and predict damages before an earthquake. Though the method is simple, the process is time-intensive, requiring precision at each step. This study simplifies the process and develops a software implementation of the proposed methodology. This software is an outcome of a Python-based GUI tool developed for India and adjacent countries. To develop this tool, the seismic sources are collected and mapped in QGIS to create a database of 4602 faults across India and adjacent countries. The written Python code identifies the sources within 250 km of the tunnel site and also calculates the PGA from each source through empirical attenuation relationships. This GUI tool evaluates the Seismic Vulnerability of Rock Tunnels (SVRT) using input parameters, such as latitude, longitude, Rock Mass Rating, Overburden, lining type, and tunnel shape. Using the obtained PGA values for seismic sources within 250 km and by critically combining the entered input parameters, the tool predicts the damage class and probable damages for any location within the study region. The reports are generated in .txt (notepad) format and graphs for the distribution of total faults in each damage class are provided for the user’s location. The validation of this tool is done by performing SVRT of the Daliang tunnel site. The results of the software and actual damages of the Daliang tunnel due to the Menyuan earthquake (2022/Mw 6.6) in Qinghai, China are compared. The tool showed a good agreement with the proposed software. The software’s user-friendly interface makes it easy to input data and quickly obtain results. HighlightsFor the first time, a simple method is proposed for predicting and assessing the seismic damages to the rock tunnels before an earthquake using the Seismic Damage Classification of Tunnels.Employing the methodology, this study proposes a software, which is a Python-based GUI tool that can perform the Seismic Vulnerability of Rock Tunnels (SVRT) before an earthquake in India and adjacent Countries.Utilizing this tool, engineers can perform the SVRT for tunnel sites by generating reports and graphs before an earthquake.The proposed software is simple to use and delivers quicker results through obtained reports, as it can be used by engineers for preliminary seismic investigations.
Author Singh, Aditya
Reddy, A. Dinesh
Author_xml – sequence: 1
  givenname: A. Dinesh
  surname: Reddy
  fullname: Reddy, A. Dinesh
  organization: Department of Civil Engineering, Indian Institute of Technology Roorkee
– sequence: 2
  givenname: Aditya
  surname: Singh
  fullname: Singh, Aditya
  email: aditya.singh@ce.iitr.ac.in
  organization: Department of Civil Engineering, Indian Institute of Technology Roorkee
BookMark eNp9UU1rGzEQFSGFOmn_QE8DPW87K2k_ktvGTVNDSkLiQG9ClmYdObbkSLsH3_oj-mf6d_pLqsaBXEoY0DyY994Mekfs0AdPjH0o8VOJ2HxOiDWKAnlVoJRNRgdsUkohC1mJH4dsgg0XBa8Ff8uOUloh5mHTTtjvDm7dZrt2aXAGvtNwHyz0IUKXEqXk_BJuyaVNHn7RG70kcB5ugnmA-eg9rROcUaYTnOs43D-O-oFO4Tpj4H9-_uq22dnowQUPof_PpsUONFzvMvbFmU5k4eJuBvMQ1k9HzLx1GrS30NmVNuQHmIbRD9FResfe9Hqd6P1zP2Z3X8_n02_F5dXFbNpdFoY3fChKlBU1lvr8tKXsed0Stk3bCmMrMqbHBVlb00mpcdG3fNHaKpckIWpd1VIcs497320MjyOlQa3CGH1eqQTnXDb5L-vM4nuWiSGlSL3aRrfRcadKVP8iUvuIVI5IPUWkMIvEXpQy2S8pvli_ovoLhbuYzg
Cites_doi 10.1007/s00603-022-03056-7
10.1002/geot.201600007
10.1016/j.ijrmms.2022.105290
10.1007/s11069-011-9924-3
10.1016/j.tust.2017.07.019
10.1029/2010EO200001
10.3133/ofr97470G
10.1785/0120050138
10.1061/AJGEB6.0000580
10.1007/s12517-022-09793-x
10.1007/s11629-016-3878-6
10.1007/s00603-024-04102-2
10.12090/j.issn.1006-6616.2023027
10.1016/j.istruc.2023.02.039
10.1016/j.soildyn.2022.107505
10.1007/s10064-011-0367-6
10.1016/S0886-7798(01)00047-5
10.1016/j.soildyn.2012.11.002
10.1016/j.engfailanal.2023.107047
10.1016/j.epsl.2023.118412
10.1016/j.enggeo.2014.07.017
10.1785/BSSA0840040974
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
7TN
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
DOI 10.1007/s00603-025-04473-0
DatabaseName CrossRef
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1434-453X
EndPage 7170
ExternalDocumentID 10_1007_s00603_025_04473_0
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
L8X
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
MK~
MM-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PCBAR
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
Y6R
YLTOR
Z45
Z8Z
ZMTXR
ZY4
~02
~EX
AAYXX
ABRTQ
AFFHD
CITATION
PQGLB
7TN
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
ID FETCH-LOGICAL-c272t-1045e7defe7d814f268e087883cd5eccf0bedd6e91a0bf82b8d5d5d4e336a5643
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001445003900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0723-2632
IngestDate Wed Nov 05 08:50:14 EST 2025
Sat Nov 29 07:47:27 EST 2025
Fri Jun 20 01:12:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Portal
Seismic damages
Rock tunnels
Lining
Earthquake
Python-based GUI tool
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-1045e7defe7d814f268e087883cd5eccf0bedd6e91a0bf82b8d5d5d4e336a5643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3222470016
PQPubID 60272
PageCount 22
ParticipantIDs proquest_journals_3222470016
crossref_primary_10_1007_s00603_025_04473_0
springer_journals_10_1007_s00603_025_04473_0
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Rock mechanics and rock engineering
PublicationTitleAbbrev Rock Mech Rock Eng
PublicationYear 2025
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References T Li (4473_CR9) 2012; 71
Z Chen (4473_CR1) 2012; 61
CH Dowding (4473_CR3) 1978; 104
4473_CR24
KP Sreejaya (4473_CR15) 2022; 163
4473_CR6
4473_CR4
4473_CR5
R Styron (4473_CR16) 2010; 91
X Wang (4473_CR19) 2022; 15
A Wu (4473_CR23) 2023; 162
K Li (4473_CR10) 2023; 622
DL Wells (4473_CR22) 1994; 84
4473_CR18
4473_CR17
AD Reddy (4473_CR12) 2024
T Kanno (4473_CR8) 2006; 96
P Chen (4473_CR2) 2023; 145
4473_CR11
A Sala (4473_CR13) 2016; 9
X Zhang (4473_CR27) 2018; 71
WL Wang (4473_CR21) 2001; 16
Y Yan (4473_CR25) 2023; 29
J Huang (4473_CR7) 2022; 55
HT Yu (4473_CR26) 2016; 13
ZZ Wang (4473_CR20) 2013; 45
Y Shen (4473_CR14) 2014; 180
References_xml – volume: 55
  start-page: 7817
  issue: 12
  year: 2022
  ident: 4473_CR7
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-022-03056-7
– volume: 9
  start-page: 94
  issue: 2
  year: 2016
  ident: 4473_CR13
  publication-title: Geomech Tunn
  doi: 10.1002/geot.201600007
– volume: 162
  start-page: 105290
  year: 2023
  ident: 4473_CR23
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2022.105290
– volume: 61
  start-page: 387
  year: 2012
  ident: 4473_CR1
  publication-title: Nat Hazards
  doi: 10.1007/s11069-011-9924-3
– volume: 71
  start-page: 138
  year: 2018
  ident: 4473_CR27
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2017.07.019
– volume: 91
  start-page: 181
  issue: 20
  year: 2010
  ident: 4473_CR16
  publication-title: EOS Trans Am Geophys Union
  doi: 10.1029/2010EO200001
– ident: 4473_CR11
  doi: 10.3133/ofr97470G
– ident: 4473_CR5
– volume: 96
  start-page: 879
  issue: 3
  year: 2006
  ident: 4473_CR8
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/0120050138
– volume: 104
  start-page: 175
  issue: 2
  year: 1978
  ident: 4473_CR3
  publication-title: J Geotech Eng Div
  doi: 10.1061/AJGEB6.0000580
– volume: 15
  start-page: 478
  issue: 6
  year: 2022
  ident: 4473_CR19
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-022-09793-x
– volume: 13
  start-page: 1958
  year: 2016
  ident: 4473_CR26
  publication-title: J Mt Sci
  doi: 10.1007/s11629-016-3878-6
– year: 2024
  ident: 4473_CR12
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-024-04102-2
– volume: 29
  start-page: 869
  issue: 6
  year: 2023
  ident: 4473_CR25
  publication-title: J Geomech
  doi: 10.12090/j.issn.1006-6616.2023027
– ident: 4473_CR17
– ident: 4473_CR24
  doi: 10.1016/j.istruc.2023.02.039
– volume: 163
  start-page: 107505
  year: 2022
  ident: 4473_CR15
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2022.107505
– volume: 71
  start-page: 297
  year: 2012
  ident: 4473_CR9
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-011-0367-6
– volume: 16
  start-page: 133
  issue: 3
  year: 2001
  ident: 4473_CR21
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/S0886-7798(01)00047-5
– ident: 4473_CR4
– ident: 4473_CR6
– volume: 45
  start-page: 45
  year: 2013
  ident: 4473_CR20
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2012.11.002
– volume: 145
  start-page: 107047
  year: 2023
  ident: 4473_CR2
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2023.107047
– volume: 622
  start-page: 118412
  year: 2023
  ident: 4473_CR10
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/j.epsl.2023.118412
– volume: 180
  start-page: 85
  year: 2014
  ident: 4473_CR14
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2014.07.017
– volume: 84
  start-page: 974
  issue: 4
  year: 1994
  ident: 4473_CR22
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/BSSA0840040974
– ident: 4473_CR18
SSID ssj0014378
Score 2.4025967
Snippet The first part of this paper outlines a simple method for assessing seismic damage to rock tunnels prior to an earthquake, based on the Seismic Damage...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 7149
SubjectTerms Civil Engineering
Classification
Damage
Damage assessment
Earth and Environmental Science
Earth Sciences
Earthquake damage
Earthquake prediction
Earthquakes
Engineers
Fault detection
Fault lines
Geophysics/Geodesy
Graphs
Methodology
Overburden
Parameters
Python
Rock
Rock mass rating
Rock mechanics
Rocks
Seismic activity
Seismic hazard
Seismic response
Seismic surveys
Software
Technical Note
Tunnels
Title A Simplistic Method for Assessing Seismic Damage in Rock Tunnels Before Earthquake: Part 2—Application of Simplistic Method by a Python-Based GUI Tool for India and Adjacent Countries
URI https://link.springer.com/article/10.1007/s00603-025-04473-0
https://www.proquest.com/docview/3222470016
Volume 58
WOSCitedRecordID wos001445003900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1434-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014378
  issn: 0723-2632
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKAQkOUAoVWwqaAzeIlNhO7HDbQv8kWq2626q3yF5PxEKbhWYXaW88RF-G1-FJGHuT3RaVA8hSZMkjx9JMZsb55oex14qcjjTOXFTmBiM5xDLKDV1cM5FgbNLc5iGP-_SjOjrSZ2d5r0kKq9to9xaSDJp6kezmS4d4zDGNYikVze6wu2TutG_YcNw_XWAHUsz1r-Ii8tXIm1SZ2_e4aY6WPuYfsGiwNruP_--ca-xR411Cdy4OT9gKVuvs4bWag-vs_l7o5Tt7yn52oT_yAeW-VDMchlbSQD4szIFgooY-juoLWvxgLkjvwKiCY9KfMJj66JgatpHIEXZI_D59m5ov-A56NAf-68dVd4mMw7i85U12BgZ6M1-7INomW-pg7-QABuPxeTjEQUWSC6Zy0HWfjY8hBZ8_7_t_1c_Yye7O4P1-1HRyiIZc8QnpepmicljSQyey5JnGWNPtWwxdSkJUxhadyzBPTGxLza12KQ2JQmQmJadpg61W4wqfMxDCSF5alaCkYfNcCVTIrdVKaExch71pGVp8nRfsKBalmQNrCmJNEVhTxB221fK8aD7euvDgk_R4fNZhb1seL5f_vtvmv5G_YA94EBP_T2eLrU4up_iS3Rt-n4zqy1dBqH8Dcf3zDA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdgAwEPAwaIwoB74A0iJbYTJ7x1sD8VXVWt3bS3yK4vohtLt6VF6hsfgi_D1-GTcHaTFtB4AFmKLNlyLN3lfM7v7neMvVbkdMRhYoMi0xjIERZBpunimogIQx1nJvN53Mdd1eulJydZv04Kq5po9waS9JZ6mezmqEMc5hgHoZSKejfZuqQTyzHmHw6Ol9iBFAv7q7gIHBt5nSpz_Rq_H0crH_MPWNSfNrv3_2-fD9hG7V1Ce6EOD9kNLDfZvV84BzfZ7T1fy3f-iH1vw2DsAsodVTMc-FLSQD4sLIBgmg0DHFfnNPhBn5PdgXEJh2Q_YThz0TEVbCNNR9gh9ft0OdNn-A761Af-4-u39goZh0lxzZvMHDT05467INims9TC3lEHhpPJZ7-JTkmaC7q00Lan2sWQgsufd_W_qsfsaHdn-H4_qCs5BCOu-JRsvYxRWSzokUay4EmKYUq3bzGyMSlRERq0NsEs0qEpUm5SG1OTKESiY3KanrC1clLiUwZCaMkLoyKU1EyWKYEKuTGpEilGtsXeNALNLxaEHfmSmtmLJifR5F40edhiW43M8_rjrXIHPkmHxyct9raR8Wr476s9-7fpr9id_eFBN-92eh-fs7vcq4z7v7PF1qZXM3zBbo2-TMfV1Uuv4D8B3en18A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELag_AgO_BQQCwXmwA2iJrYTJ9y2tFtWlNWK3Va9RfZ6LBZotjS7SHvjIXgZXocnYezsT0HlgJClyJItx9JMPON8M98w9lyR05HGmY1coTGSI3RRoenimokEY50Wpgh53EcHqtfLj4-L_rks_hDtvoQkm5wGz9JUTbdPrdteJb55GhGPP6ZRLKWi3mV2RfpAen9fHxytcAQpmrNYcRF5ZvJF2szFa_xumtb-5h8QabA8ndv_v-c77NbC64R2oyZ32SWsNtnNc1yEm-zafqjxO7_HfrRhMPaB5p7CGd6FEtNAvi00ADHNhgGO6xMa3NUndB7BuIL3dK7CcOajZmrYQZqOsEdq-eHLTH_CV9CnPvCf376314g5TNwFbzJz0NCfe06DaIdsrIX9wy4MJ5PPYRPdijQadGWhbT9qH1sKPq_e1wWr77PDzt7w9ZtoUeEhGnHFp2QDZIrKoqNHnkjHsxzjnG7lYmRTUi4XG7Q2wyLRsXE5N7lNqUkUItMpOVMP2EY1qfAhAyG05M6oBCU1UxRKoEJuTK5EjoltsRdL4ZanDZFHuaJsDqIpSTRlEE0Zt9jWUv7l4qOuSw9KSY_TZy32cinv9fDfV3v0b9Ofsev93U550O29fcxu8KAx_rfPFtuYns3wCbs6-jod12dPg67_Akfh_tQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simplistic+Method+for+Assessing+Seismic+Damage+in+Rock+Tunnels+Before+Earthquake%3A+Part+2%E2%80%94Application+of+Simplistic+Method+by+a+Python-Based+GUI+Tool+for+India+and+Adjacent+Countries&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=58&rft.issue=6&rft.spage=7149&rft.epage=7170&rft_id=info:doi/10.1007%2Fs00603-025-04473-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon