Interpolatory, solid subdivision of unstructured hexahedral meshes

This paper presents a new, volumetric subdivision scheme for interpolation of arbitrary hexahedral meshes. To date, nearly every existing volumetric subdivision scheme is approximating, i.e., with each application of the subdivision algorithm, the geometry shrinks away from its control mesh. Often,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer Jg. 20; H. 6; S. 418 - 436
Hauptverfasser: McDonnell, Kevin T., Chang, Yu-Sung, Qin, Hong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Heidelberg Springer Nature B.V 01.08.2004
Schlagworte:
ISSN:0178-2789, 1432-2315
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new, volumetric subdivision scheme for interpolation of arbitrary hexahedral meshes. To date, nearly every existing volumetric subdivision scheme is approximating, i.e., with each application of the subdivision algorithm, the geometry shrinks away from its control mesh. Often, an approximating algorithm is undesirable and inappropriate, producing unsatisfactory results for certain applications in solid modeling and engineering design (e.g., finite element meshing). We address this lack of smooth, interpolatory subdivision algorithms by devising a new scheme founded upon the concept of tri-cubic Lagrange interpolating polynomials. We show that our algorithm is a natural generalization of the butterfly subdivision surface scheme to a tri-variate, volumetric setting.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-2789
1432-2315
DOI:10.1007/s00371-004-0246-2