Interpolatory, solid subdivision of unstructured hexahedral meshes

This paper presents a new, volumetric subdivision scheme for interpolation of arbitrary hexahedral meshes. To date, nearly every existing volumetric subdivision scheme is approximating, i.e., with each application of the subdivision algorithm, the geometry shrinks away from its control mesh. Often,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Visual computer Ročník 20; číslo 6; s. 418 - 436
Hlavní autoři: McDonnell, Kevin T., Chang, Yu-Sung, Qin, Hong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Springer Nature B.V 01.08.2004
Témata:
ISSN:0178-2789, 1432-2315
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a new, volumetric subdivision scheme for interpolation of arbitrary hexahedral meshes. To date, nearly every existing volumetric subdivision scheme is approximating, i.e., with each application of the subdivision algorithm, the geometry shrinks away from its control mesh. Often, an approximating algorithm is undesirable and inappropriate, producing unsatisfactory results for certain applications in solid modeling and engineering design (e.g., finite element meshing). We address this lack of smooth, interpolatory subdivision algorithms by devising a new scheme founded upon the concept of tri-cubic Lagrange interpolating polynomials. We show that our algorithm is a natural generalization of the butterfly subdivision surface scheme to a tri-variate, volumetric setting.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-2789
1432-2315
DOI:10.1007/s00371-004-0246-2