Cloud Data Resources and Library Subject Information Services

In the evolving landscape of library services, propelled by advancements in Internet technology and service paradigms, this study utilizes cloud-based lending data from college libraries to improve user profiling and subject-specific lending. Integrating the K-means algorithm with a Boolean matrix-e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and nonlinear sciences Jg. 9; H. 1
1. Verfasser: Zhang, Chen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Beirut Sciendo 01.01.2024
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Schlagworte:
ISSN:2444-8656, 2444-8656
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the evolving landscape of library services, propelled by advancements in Internet technology and service paradigms, this study utilizes cloud-based lending data from college libraries to improve user profiling and subject-specific lending. Integrating the K-means algorithm with a Boolean matrix-enhanced Apriori algorithm, we devise a data mining model that fine-tunes detecting patterns in user borrowing behaviors. This approach distinguishes five distinct subject areas: energy, computing, electronic communication, machinery, and environmental chemistry. The outcome reveals a bibliographic association rule mining confidence of up to 79.38%, a 30% increase over conventional methods. Moreover, it generates three notable 2-item sets. Our model introduces a groundbreaking way to offer personalized library services, significantly enriching the user experience with tailored subject information.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2444-8656
2444-8656
DOI:10.2478/amns-2024-1007