Cloud Data Resources and Library Subject Information Services

In the evolving landscape of library services, propelled by advancements in Internet technology and service paradigms, this study utilizes cloud-based lending data from college libraries to improve user profiling and subject-specific lending. Integrating the K-means algorithm with a Boolean matrix-e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and nonlinear sciences Ročník 9; číslo 1
Hlavní autor: Zhang, Chen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Beirut Sciendo 01.01.2024
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Témata:
ISSN:2444-8656, 2444-8656
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the evolving landscape of library services, propelled by advancements in Internet technology and service paradigms, this study utilizes cloud-based lending data from college libraries to improve user profiling and subject-specific lending. Integrating the K-means algorithm with a Boolean matrix-enhanced Apriori algorithm, we devise a data mining model that fine-tunes detecting patterns in user borrowing behaviors. This approach distinguishes five distinct subject areas: energy, computing, electronic communication, machinery, and environmental chemistry. The outcome reveals a bibliographic association rule mining confidence of up to 79.38%, a 30% increase over conventional methods. Moreover, it generates three notable 2-item sets. Our model introduces a groundbreaking way to offer personalized library services, significantly enriching the user experience with tailored subject information.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2444-8656
2444-8656
DOI:10.2478/amns-2024-1007