On an iterative algorithm converging to the solution of XCX=D
Based on a modified Newton method in the Banach algebra of square matrices, we construct here a simple iterative algorithm that converges to the unique positive solution of the algebraic Riccati equation X C X = D . Numerical examples illustrating the theoretical study and showing the speed of conve...
Gespeichert in:
| Veröffentlicht in: | Afrika mathematica Jg. 31; H. 5-6; S. 997 - 1007 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1012-9405, 2190-7668 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Based on a modified Newton method in the Banach algebra of square matrices, we construct here a simple iterative algorithm that converges to the unique positive solution of the algebraic Riccati equation
X
C
X
=
D
. Numerical examples illustrating the theoretical study and showing the speed of convergence of our approach are discussed as well. At the end, we put some open questions as purposes for future research. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1012-9405 2190-7668 |
| DOI: | 10.1007/s13370-020-00776-3 |