On an iterative algorithm converging to the solution of XCX=D

Based on a modified Newton method in the Banach algebra of square matrices, we construct here a simple iterative algorithm that converges to the unique positive solution of the algebraic Riccati equation X C X = D . Numerical examples illustrating the theoretical study and showing the speed of conve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Afrika mathematica Ročník 31; číslo 5-6; s. 997 - 1007
Hlavní autoři: Al-Harbi, Nawal, Raïssouli, Mustapha
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2020
Springer Nature B.V
Témata:
ISSN:1012-9405, 2190-7668
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Based on a modified Newton method in the Banach algebra of square matrices, we construct here a simple iterative algorithm that converges to the unique positive solution of the algebraic Riccati equation X C X = D . Numerical examples illustrating the theoretical study and showing the speed of convergence of our approach are discussed as well. At the end, we put some open questions as purposes for future research.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1012-9405
2190-7668
DOI:10.1007/s13370-020-00776-3