On an iterative algorithm converging to the solution of XCX=D
Based on a modified Newton method in the Banach algebra of square matrices, we construct here a simple iterative algorithm that converges to the unique positive solution of the algebraic Riccati equation X C X = D . Numerical examples illustrating the theoretical study and showing the speed of conve...
Uloženo v:
| Vydáno v: | Afrika mathematica Ročník 31; číslo 5-6; s. 997 - 1007 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 1012-9405, 2190-7668 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Based on a modified Newton method in the Banach algebra of square matrices, we construct here a simple iterative algorithm that converges to the unique positive solution of the algebraic Riccati equation
X
C
X
=
D
. Numerical examples illustrating the theoretical study and showing the speed of convergence of our approach are discussed as well. At the end, we put some open questions as purposes for future research. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1012-9405 2190-7668 |
| DOI: | 10.1007/s13370-020-00776-3 |