Monotone discretizations of levelset convex geometric PDEs

We introduce a novel algorithm that converges to level set convex viscosity solutions of high-dimensional Hamilton–Jacobi equations. The algorithm is applicable to a broad class of curvature motion PDEs, as well as a recently developed Hamilton–Jacobi equation for the Tukey depth, which is a statist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik Jg. 156; H. 6; S. 1987 - 2029
Hauptverfasser: Calder, Jeff, Lee, Wonjun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
Schlagworte:
ISSN:0029-599X, 0945-3245
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a novel algorithm that converges to level set convex viscosity solutions of high-dimensional Hamilton–Jacobi equations. The algorithm is applicable to a broad class of curvature motion PDEs, as well as a recently developed Hamilton–Jacobi equation for the Tukey depth, which is a statistical depth measure of data points. A main contribution of our work is a new monotone scheme for approximating the direction of the gradient, which allows for monotone discretizations of pure partial derivatives in the direction of, and orthogonal to, the gradient. We provide a convergence analysis of the algorithm on both regular Cartesian grids and unstructured point clouds in any dimension, and present numerical experiments that demonstrate the effectiveness of the algorithm in approximating solutions of the affine flow in two dimensions and the Tukey depth measure of high-dimensional datasets such as MNIST and FashionMNIST.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-024-01444-5