Decision problem for a class of univariate Pfaffian functions
We address the decision problem for sentences involving univariate functions constructed from a fixed Pfaffian function of order 1. We present a new symbolic procedure solving this problem with a computable complexity based on the computation of suitable Sturm sequences. For a general Pfaffian funct...
Saved in:
| Published in: | Applicable algebra in engineering, communication and computing Vol. 35; no. 2; pp. 207 - 232 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0938-1279, 1432-0622 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We address the decision problem for sentences involving univariate functions constructed from a fixed Pfaffian function of order 1. We present a new symbolic procedure solving this problem with a computable complexity based on the computation of suitable Sturm sequences. For a general Pfaffian function, we assume the existence of an oracle to determine the sign that a function of the class takes at a real algebraic number. As a by-product, we obtain a new oracle-free effective algorithm solving the same problem for univariate E-polynomials based on techniques that are simpler than the previous ones, and we apply it to solve a similar decision problem in the multivariate setting. Finally, we introduce a notion of Thom encoding for zeros of an E-polynomial and describe an algorithm for their computation. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0938-1279 1432-0622 |
| DOI: | 10.1007/s00200-022-00545-8 |